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Abstract—This paper addresses the design of networks-on-
chips for use in multi-processor systems-on-chips – the hardware
platforms used in embedded systems. These platforms typically
have to guarantee real-time properties, and as the network is a
shared resource, it has to provide service guarantees (bandwidth
and/or latency) to different communication flows. The paper
reviews some past work in this field and the lessons learned,
and the paper discusses ongoing research conducted as part
of the project ”Time-predictable Multi-Core Architecture for
Embedded Systems” (T-CREST), supported by the European
Commissions seventh framework programme. The aim of this
project is to develop a general-purpose multi-core platform for
real-time systems as well as tools supporting its use (compiler,
simulator, and worst-case execution time analysis tool).

Index Terms—Multiprocessor interconnection networks; Real
time systems; Asynchronous circuits; Time division multiplexing;

I. INTRODUCTION

Over the last decade, the network-on-chip (NOC) concept
has evolved from an academic research topic towards indus-
trial take-up. Many of today’s chip multi-processors (CMP)
used in general purpose computing, and many of todays
multi-processor system-on-chip (MPSOC) platforms used in
application-specific embedded systems are built around some
form of intra-chip packet-switched interconnection network.
Fig. 1 shows such multi-processor platform using a 2D mesh
topology NOC.

Despite the architectural convergence between CMPs and
MPSOCs there are also some key differences. In general pur-
pose computing, the processing nodes are typically homoge-
neous, the focus is on optimizing the typical-case performance,
and the network typically supports connection-less best-effort
packet-switching.

In the field of embedded systems the processing nodes
are often heterogeneous, and in order to support provision
of real-time requirements the network-on-chip has to provide
bandwidth and/or latency guarantees. This calls for rather
different NOC designs typically implementing some form of
virtual circuit switching. Another observation is that much of
the research in NOCs for real-time MPSoC systems targets
the creation of application-specific hardware platforms. This
includes application-specific NOC topologies and application-
specific dimensioning of resources. The very high and growing
cost of developing and fabricating large integrated circuits
makes this relevant only for high volume (consumer) products.
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Fig. 1. An example NOC based MPSoC: (a) 2D mesh NOC topology. (b)
Details of a node/tile.

Systems that are to be manufactured in smaller quantities must
therefore be based on more general-purpose platforms.

These two views: designing a custom platform targeting
a specific application or using a general-purpose platform to
implement a given application, may lead to somewhat different
NOC-designs. The T-CREST platform, as discussed at the end
of this paper, belongs to the latter category.

The paper is organized as follows. Section 2 introduces
the basics of on-chip networks. Section 3 addresses how to
provide real-time guarantees. Section 4 presents a number
of representative NOC-designs specifically targeting real-time
systems. Section 5 discusses the experience gained from this
research – the baseline for our work on the NOC for the
T-CREST platform. Section 6 presents the T-CREST project
and the directions taken for the NOC design. Finally section
7 concludes the paper. The paper has been been written to
supplement an invited talk.

II. NOC-BASED MULTI-PROCESSOR SYSTEMS

Fig. 1 shows an example of a NOC-based MPSoC plat-
form. The NOC itself consists of a structure of routers and
links implementing a packet-switched communication fabric,
and a set of network adapters (NA) that bridges from the
packet-switched interconnect to the memory-style read-write
transaction interfaces offered to the nodes connected by the
NOC. The network adapter maps a read or a write transaction
into a packet and this typically includes generating a header



that is used to route the packet through the NOC. A packet
consists of a sequence of flits that are transmitted in immediate
succession. Very often the physical implementation of the
entire platform use a tile-based approach, where tiles are
simply replicated and where connections are established by
abutment. A node is typically a processor with some amount
of local memory (cache memories and/or explicitly managed
scratchpad memories). A node can also be a slave device,
for example an SDRAM-controller providing access to some
larger and shared off-chip memory or an IO-controller.

The shift towards packet-switched NOC-based interconnect
is due to a number of factors including those discussed below.

Natural segmentation and sharing of wires: In current and
future silicon technologies it is not possible to have wires that
span an entire chip. The load capacitance would be prohibitive
and the signal propagation delay (latency) would be very large.
Long wires have to be divided into smaller segments with
repeater-buffers driving each section. An obvious next step is
to add pipeline registers to the buffer stages. In this way the
throughput can be improved to a point where it matches (or
even exceeds) the frequency of the clock signals used in the
processors nodes. Finally, by adding multiplexors to the input
of the pipeline registers, a X-Y switched pipelined interconnect
emerges – i.e. a simple network.

GALS-style timing organization: In order to be practically
feasible, a large chip has to be designed as a globally-
asynchronous and locally synchronous system [1]. The tile-
based organization of a multi-processor platform offers spa-
tially confined components with clean interfaces where it is
natural to introduce clock domain crossings: (i) processor
to network adapter interface, (ii) network adapter to router
interface , and (iii) router to router interface. Furthermore
it seems natural to seek implementations of the routers and
links which can tolerate a fixed clock skew (mesochronous),
a drifting clock skew (plesiochronous), or perhaps even more
natural, asynchronous implementations possibly using delay-
insensitive signaling on the links.

Bandwidth scales with the number of nodes: When the
number of nodes grows, the number of links and routers grows
as well and this provides more bandwidth. In regular two-
dimensional topologies, like mesh or torus, the number of links
grows linearly with the number of nodes (N) and the bisection
bandwidth grows as the square-root of N. Finally the packet
switching means that the wires implementing a link can be
shared by several communication flows.

Modular design: The NOC offers simple plug and play
composability. Assuming standardized interfaces (processor-
NA, NA-router, and router-router) large systems with any
number of processor nodes and any network topology can are
built by simply connecting the necessary components. This is
the hardware view. There is also a software side to this, which
is perhaps less trivial.

III. REAL-TIME NOCS – BASIC PRINCIPLES

The fact that a NOC is a shared communication
medium comprising multiple independently-arbitrated re-

sources (routers or links) may severely complicate timing
analysis. The seemingly simple question: ”What is the latency
that the NOC adds to a read or write transaction towards a
memory in a remote node?” can be very difficult to answer, and
this makes it hard to compute the worst-case execution time
(WCET) of a program executing on a processor node and thus
guaranteeing real-time behavior. Many NOCs are designed to
support best-effort traffic only and several of these (e.g. QNOC
[2] and ANOC [3]) offer multiple priority-levels for packets,
but hard real-time guarantees are not a property of the NOC
itself.

A NOC for a real-time platform must allow guarantees
on bandwidth and/or latency to be made, and this calls for
some form of end-to-end connection. There are essentially two
ways of achieving this: non-blocking routers with rate control
(e.g. Mango [4], [5]), and circuit switching (e.g. SoCBUS [6]
and Wolkotte [7]), possibly with time division multiplexing
(TDM), (e.g. Æthereal [8], [9] and Nostrum [10]). In the
following section we present and discuss each of these NOCs.
They differ in whether or not they are work conserving and to
what extent hardware resources are reused for different virtual
circuits.

IV. REAL-TIME NOCS – CASE STUDIES.

MANGO was designed with the following goals in mind:
(i) it should be implemented using asynchronous circuits in
order to support a GALS-style platform, (ii) it should be
simple in order to facilitate high operation speed and low
hardware overhead, (iii) it should support both best-effort
(BE) and guaranteed service (GS) traffic, (iv) it should be
work-conserving in order to make efficient use of network
resources, and finally (v) it should provide bounds on latency
and bandwidth which are decoupled (or at least not inversely
dependent on each other). The latter two goals are in contrast
to TDM-based NOC’s like NOSTRUM and Æthereal. GS and
BE traffic is handled by separate resources in the router. The
GS part uses rate control and a non-blocking router. The latter
requires a separate physical buffer for each virtual circuit
(VC) sharing an outgoing link. These VC-buffers are in the
output ports, i.e. after the crossbar switch and before the link
arbitration module. To regulate the flow of flits, MANGO
uses an elaborate arbitration mechanism for each router output
port supplemented by a credit-based flow control mechanism
among the VC-buffers buffers in neighboring routers, along
the path that implements the end-to-end virtual circuit [5]. In
this way GS-traffic is routed through a sequence of VC-buffers
and the path is set up at initialization time by programming
the crossbar switches in the GS-routers. Packets are therefore
header-less. MANGO is work conserving, the links are shared
but the VC-buffers in the routers are not.

SoCBUS uses pure circuit-switching. No resources, i.e.
wires, and router buffers are shared between connections. This
lowers utilization and increases cost. However, once a connec-
tion has been established, real-time guarantees are trivially
achieved. SoCBUS uses a ”dial up” scheme where special
packets are used to establish and tear down connections. It



may happen that a requested connection cannot be established
because some resource along the path is already reserved by
another connection. The fact that this is possible compromises
the real-time properties. As all resources for a given end-to-end
circuit are private it follows that the design is work conserving.

The NOC described by Wolcotte et al. in [7] is also a
purely circuit-switched design – but more in the sense of a
reconfigurable coarse-grained FPGA. The design uses a mesh-
type structure of routers and links. Each link is divided into
a number of lanes, and the router (a statically configured
crossbar) may be set to switch theses lanes individually.
Depending on bandwidth requirements a connection may use
one or more lanes. The approach may be advantageous in
streaming-type application. As is the case for SoCBUS no
resources, i.e. wires, and router buffers are shared between
connections.

Æthereal uses time division multiplexing (TDM). In each
time-slot a router simply forwards data/packets from its input
ports to its output ports. The network adapters inject packets
into the packet switched structure of routers and links accord-
ing to a pre-determined schedule, which avoids the need for
arbitration, flow control, and buffering – the routers and links
form a simple switched pipelined circuit. The network adapters
implement credit-based flow control for end-to-end virtual
circuits. The original Æthereal router design [9] supports both
GS and BE traffic and the slot tables, controlling the switching
of the GS-traffic through the routers, are implemented inside
the routers. BE-traffic uses slots that are not reserved and slots
that are reserved but not used. A light version of Æthereal,
called aelite, supports GS traffic only, and it uses source
routing where packet headers carry the routing information
[11]. This eliminates the slot-tables from the routes, and the
result is a very simple router design. In the latest version
of aelite, called dAElite [12], the routing tables are again
placed in the routers in order to support multi-cast routing.
All versions of Æthereal are non-work conserving, but all
resources that a packet traverses are shared.

NOSTRUM [10] is another example of a pioneering NOC
based on time division multiplexing. It uses a concept of loop-
ing containers to support GS traffic. A container can contain a
packet or it can be empty. Bandwidth for a given virtual circuit
is reserved by ensuring that enough containers are looping
from source to destination. The fact that containers loop may
be used to support acknowledged writes and transmission of
read responses.

V. REAL-TIME NOCS – DISCUSSION

In retrospect, and in this authors judgment, MANGO largely
met the five goals listed. The only real downside is the
hardware cost, which is dominated by the many VC buffers
and the large crossbar switch. A typical router for a 2D-mesh
NOC has 5 ports with 8 VC’s per port (7 for GS and 1
for BE). This results in a 5×40 crossbar switch, and 40 VC
buffers each 2-4 flits deep. Assuming 32-bit links the total
buffer capacity of a router is in the order of 2500-5000 bits.
According to figures presented in [13] this accounts for 19.5%

of the router area. The corresponding crossbar switch accounts
for 34.7 % of the area. The entire router has an area of 0.277
mm2 in a 0.13 µm CMOS technology and its speed range
from 400 Mflits/s (assuming worst-case parameters and delay-
insensitive signaling on the links) to 1,000 Mflits/s (assuming
typical-case parameters and bundled-data signaling on the
links). An alternative design with 5 VCs per port has an area
of 0.188 mm2 in a 0.13 µm CMOS technology. These figures
are comparable with those reported for the original Æthereal
NOC [9].

A comparable 5 ported aelite router, implemented as a
3-stage pipeline and using 32 bit links has a total of 480
bits of pipeline registers, and as there are no virtual circuit
buffers the crossbar switch is the simplest possible. Given
that the control is also simpler – because there is no flow
control – it is seems safe to estimate a 10:1 area difference
between MANGO and aelite. Actual numbers for the aelite
design is reported in [11] for an implementation in 90 nm
CMOS technology, but it is difficult to scale and compare
across technologies. A TDM-based NOC requires some form
of common time reference to control the time-slotting, and
this favors a simple clocked synchronous implementation. As
mentioned before, the NOC is a chip-wide structure, and syn-
chronous operation is generally not possible. Mesochronous
or fully asynchronous solutions are needed. A mesochronous
implementation of aelite is reported in [11]. It adds small
FIFO-buffers in the links in order to compensate for the phase
difference between the clocks in the routers connected by the
link. A mesochronous design that can tolerate clock skew
of up to half a clock period is obtained by adding 4-word
deep FIFO’s to the links, and this results in a 50% area
increase. This reduces the area advantage to 7:1 but this is
still significant.

The above discussion suggests that perhaps a simpler and
faster design that provides plenty of raw bandwidth is a
better choice than a more elaborate design. TDM is not work
conserving, and many slots on a given channel may not be
used, resulting in a poorer bandwidth utilization. Given the
very large speed-performance advantage, and given that the
design of a real-time system is driven by worst-case concerns,
this may not matter much.

While the design of routers have received a lot of attention
in the literature, it is interesting to observe that there is
surprisingly little data published on the hardware complexity
of the network adapters. Looking at Fig. 1(b), and keeping
in mind that the processing is done in the processor node,
the router and the network adapter in a tile represents a
”communication overhead”. And when using a simple TDM-
based router (like aelite), the network adapter may well stand
out – its hardware complexity may even be comparable to that
of a simple processor. In this authors opinion, it is worthwhile
taking a closer look at this issue. For the original Æthereal
NOC the network adapter is reported to have an area of
0.11 mm2 in a 0.13 µm CMOS technology [14]. According
to [15] an area-optimized 32-bit MIPS M4K processor has an
area of 0.185 mm2 in a 0.13 µm CMOS technology.



Finally a few comments on the nature of the design chal-
lenges faced when designing a NOC. The packet-switched
interconnect consisting of routers and links simply transports
packets from source to destination. Here, the challenges are
mostly hardware design issues like area, speed and power
consumption of the routers and links, as well as the use of
mesochronous, plesiochronous or asynchronous circuit design
solutions. The design of the network adapters on the other
hand is heavily influenced by system-level issues like the
programming model and the memory hierarchy. The memory
model is typically distributed non-coherent shared memory. In
in order to hide the latency associated with accessing memory
in a remote node, DMA-controllers are often used to transfer
blocks of data. This functionality may be provided by the
network adapter or it may be provided by the processor node
– the boundary between the two is not 100% obvious.

The issues discussed here form the baseline for our current
NOC design work in the T-CREST project.

VI. THE T-CREST PROJECT

The T-CREST project aims at developing a multi-processor
platform for real-time systems where all components (proces-
sors, interconnection network, compiler etc.) are designed with
a focus on time-predictability, e.g., optimized to minimize the
WCET and to allow analysis tools to provide tight bounds on
the WCET.

The hardware platform will be similar to the one shown in
Fig. 1. We envision a prototype with up to 64 processor nodes.
Each processor node will contain local instruction and data
caches and local scratchpad memories. The platform will also
include a memory controller providing access to an off-chip
SDRAM memory. The scratchpad memories in the nodes and
the off-chip SDRAM memory is mapped into a single shared
address space. Each processor node will have a number of
DMA controllers which are capable of performing block read
and write transaction targeting the external SDRAM memory
as well as scratchpad memories in remote nodes. Effective
use of the DMA controllers for overlapping of processing and
data transfer is crucial for hiding the considerable latency of
the NOC and the the shared memory controller.

The T-CREST project includes work packages addressing:
the processor, the NOC, the compiler, the memory controller,
and the WCET analysis tool (adaption of an existing WCET
tool), and evaluation of the platform using two industrial
applications.

The processor is a statically scheduled, dual-issue RISC
processor that is optimized for real-time systems [16]. The
execution times of the individual instructions are known and
are provided as part of the instruction set architecture (ISA).
Instructions are predicated in order to support the generation of
code with known and fixed execution time. To make the mem-
ory hierarchy equally time-predictable as well it is envisioned
that the processor will use several specialized caches: an
instruction cache which operates on whole functions/methods
[17] and a set of specialized data caches (a stack cache, a cache
for for static data, constants, and a small, fully associative

cache for heap access). Cache misses, as well as explicitly
initiated DMA transfers, access the off-chip SDRAM through
a time-predictable memory controller.

The development of the T-CREST NOC will be based on the
experiences from work on the MANGO and AEthereal NOC’s.
As mentioned in the introduction, multi-processor platforms
for embedded systems are typically optimized for a given
application or application domain. In the T-CREST project
our aim is to develop a general-purpose platform – either a
platform that can be configured to optimize the performance
of the system or a platform that can be used as is, without any
configuration. Our aim is to develop an asynchronous version
of a simple TDM-based NOC. The NOC is used to transfer
different types of data: message passing between cores, cache
fills from main memory, DMA-driven communication between
scratch-pad memories and the off-chip memory, and syn-
chronization operations such as compare-and-swap. In some
architectures a single NoC serves all those different types of
data. However, the requirements of these various types of data
with respect to packet size, address ranges, and flow control
are different. Therefore, T-CREST will evaluate if several
different NOCs, each optimized for some type(s) of traffic,
represents a better choice. As an example we mention that
the scratchpad to scratchpad message passing in the T-CREST
project requires an ”all-to-all” network (which can be TDM-
based, without buffering and flow-control all the way from
the source to the destination), whereas the traffic towards the
memory controller managing the off-chip SDRAM requires an
”all-to-one” network. Initial ideas for a synchronous general-
purpose all-to-all TDM-based NOC design have been explored
in [18].

VII. CONCLUSION

This paper reviewed some fundamentals issues in the design
of networks on chips, presented and discussed a number of
NOCs specifically developed for use in real-time systems and
presented the NOC-design considerations in the T-CREST
project. The paper argued for simple and fast solutions.
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