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Abstract—A good worst-case performance and the availabil-
ity of high-quality bounds on the worst-case execution time
(WCET) of tasks are central for the construction of hard real-
time computer systems for safety-critical applications. Timing-
predictability of the whole software/hardware system is a nec-
essary prerequisite to achieve this. We show that a predictable
architecture and the tight and seamless integration of compilation
and WCET analysis is beneficial to achieve the initial two goals
of good worst-case performance and the availability of high-
quality bounds on the WCET of computation tasks. Information
generated by the compiler improves the WCET analysis. Detailed
timing feedback from the WCET analysis helps the compiler
to reduce the worst case execution time. The paper describes
the interface and the interaction between the industrial strength
WCET analysis tool and the compiler as developed in the EU
FP7 T-CREST project, and demonstrates the cooperation of these
tools with an illustrative example.

I. INTRODUCTION

Embedded computer systems are playing an increasingly
important role in applications that are time-critical, e.g., in
fly-by-wire applications, in medical equipment, and in control
systems of nuclear power plants. To ensure safety, the com-
puter systems controlling the actuators in these applications
have to respond to changes in the environment within strict
time bounds. Despite the stringent timing requirements of these
time-critical applications, and despite the importance to design
and implement systems to meet these timing constraints and
to show that the implementation indeed fulfils all timing re-
quirements, the importance of time as a first-order property of
embedded systems behaviour is not adequately reflected by the
platforms and methods/tools widely used for the construction
of the embedded computer systems for these applications.

When it comes to planning and evaluating the worst-case
timing of tasks for time-critical embedded applications, the
inadequacy of platforms and methods/tools leads to a number
of problems questioning the precision and even soundness of
the analysis results and thus to a waste of efforts.

Lack of Independence of Hardware State and Software
Context: In many contemporary architectures, the time needed
for executing instructions, accessing data, and using the proces-
sor’s resources depends on the state of the hardware, which has
built up during the history of earlier operations and events, thus
creating far-reaching timing effects. These far-reaching timing

effects increase the price for a high-quality timing analysis and
lead to pessimism of WCET estimates.

Lack of Temporal Composability and Compositional-
ity: Non-local, far-reaching timing effects lead to context-
dependent timing which prohibits the isolated assessment of
the timing of software. This impedes the modular construction
and reuse of software, which builds on timing composability.

Lack of Small Timing Variability: The timing of hardware
operations and software functions, as well as the control flow
of software often depend on program inputs. These timing
variations lead to timing behaviour that is difficult to analyse
and lead to pessimism in the WCET analysis.

Lack of Seamless Integration of Compiler and WCET
analyser: WCET analysis needs exact information about in-
structions and data being accessed by the code under analysis.
Therefore it is done on the executable code, i.e., after the code
has been compiled. During compilation, a lot of information
about the original semantics and behaviour of the source code,
including information that would be of use to the WCET
analysis, is removed by the compiler. The resulting loss of
information contributes to pessimism in the WCET analysis.

Lack of WCET-aware/sensitive Optimisations: Code op-
timisations done by traditional compilers aim at improving
performance, i.e., reducing the average execution time. These
optimisations are often detrimental for real-time systems, as
they can increase the WCET of the code. Further, a number of
optimisations cannot be reconstructed from the object code or
executable code, thus (a) again making the WCET analysis
overly pessimistic and (b) prohibiting a meaningful back
annotation of WCET-timing information from the machine-
code to the source-code level.

Within the T-CREST project we aim at making the quest for
time-predictability a guiding principle in the design of comput-
ing platforms and code for time-critical embedded systems. To
this end we are developing a novel time-predictable processor
architecture [1] and a compiler that interacts with WCET-
analysis to produce code that has stable execution times, is
highly competitive w.r.t. its worst-case performance, and is
well amenable to a high-quality WCET analysis.

In this paper we present the T-CREST approach to an
integrated compilation and timing analysis. This tight inte-



gration of compiler and the WCET tool allows us to access
and connect both (a) information about the structure and
semantics of the code being compiled and (b) detailed worst-
case timing information about all code parts represented by
the data structures in the compiler in a way that has not been
possible before. As a result of this tool integration we are
able to produce time-predictable/WCET-analysable code for
which all the worst-case timing details are transparent and to
make optimisations that yield a good WCET-performance. The
paper highlights the T-CREST goals (Section II), describes the
WCET tool (Section III), the T-CREST compiler (Section IV),
the integration of compiler and WCET analysis (Section V),
and demonstrates the cooperation of compiler and WCET
analysis by means of an example (Section VI).

II. T-CREST GOALS

The central goal of T-CREST is to develop a system
architecture and a tool framework that regard the timing
comprehensibility of all hardware and software activities as
a primary objective in hardware and software development. A
detailed understanding of the timing of all components of a
system from the very beginning of its construction is a basic
prerequisite for building time-predictable embedded computer
systems for time- and safety-critical applications.

To achieve this overall goal of T-CREST we strive for the
following goals for the compiler and WCET analysis.

Temporal Composability: The execution times of generated
code should not depend on the software context in which the
code is executed, i.e., changing one part of some software must
not change the timing of the other code sections. Temporal
composability is a prerequisite for a hierarchical, modular
software development and the time-aware re-use of software.

Timing Compositionality: Given the timing of pieces of
code, the timing of a composite should be easy to analyse,
i.e., computable with simple timing formulae. Timing compo-
sitionality helps to keep the overestimation of the worst-case
execution time and the resource needs for WCET analysis low.

Small Timing Variability: Ideally, the generated code
should run with constant execution time or at least with small
execution-time jitter (variability). This greatly simplifies both
timing analysis and the argumentation about the temporal
behaviour of real-time application software.

Good Worst-Case Performance: In hard real-time applica-
tions, the average execution time (performance) of code is of
minor concern. The generated code should have a short WCET.
A short WCET together with a tight WCET estimate helps to
keep the resource needs of an application low, thus reducing
the prime cost of the computer system.

In order to reach these goals, the compiler and WCET
analysis have to rely on the availability of an appropriate
hardware platform (see Section IV-A). The rest of the paper
will explicate that the listed goals can only be reached through
a close interaction between the compiler and the WCET tool.

III. WCET ANALYSIS

A. WCET Analysis Framework

A static worst case execution time analyser typically works
in four phases as illustrated in Figure 1:
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Fig. 1. Components of a WCET analysis framework.

Decoding Phase: In this phase the tool processes the input
(binary) program and an annotation file that provides further
knowledge (see Section III-B). The decoder identifies the
machine instructions and reconstructs the control-flow graph.
The user may provide additional information that is passed
to each analysis phase. Such information could be targets of
computed calls (used during the decoding phase), the number
of iterations for a specific loop (used during the loop and
value analysis), the hardware configuration (as required by the
pipeline analysis), and flow constraints (used in path analysis).

Loop and Value Analysis: The loop analysis phase tries to
automatically compute upper bounds of loop iterations for all
loops. The user may refine computed loop bounds and specify
bounds that could not be computed automatically.

The value analysis determines safe approximations of the
values of processor registers and memory cells for every
program point and execution context. Contents of registers or
memory cells as well as address ranges for memory accesses
may be provided by user annotations.

Architectural Analysis: Processing the annotated control-
flow graph, the architectural analysis simulates the execution
behaviour of the input program through an abstract hardware
model. The analysis determines lower and upper bounds for
the execution times of basic blocks by performing an abstract
interpretation of the program execution on the particular archi-
tecture, taking into account its pipeline, caches, memory buses,
and attached peripheral devices [2]–[4].

Typically, the architectural analysis is a composition of a
pipeline analysis and a cache analysis. By means of an abstract
model of the hardware architecture, the pipeline analysis
simulates the execution of each instruction. The cache analysis
provides safe approximations of the contents of the caches
at each program point. Complex architectural features are the
main challenges for this analysis phase.

Since most parts of the pipeline state influence timing,
current abstract models closely resemble the concrete hard-
ware. The more performance-enhancing features a pipeline
has, the larger is the search space. Superscalar- and out-of-
order execution increase the number of possible interleavings.
The larger the buffers (fetch buffers, retirement queues, etc.),



the longer the influence of past events lasts. Dynamic branch
prediction, speculative execution, cache-like structures, and
branch history tables increase history dependence even more.

All these features influence execution time. To compute
a precise bound on the execution time of a basic block, the
analysis needs to exclude as many timing accidents as possi-
ble. Such accidents are data hazards, branch mis-predictions,
occupied functional units, full queues, etc.

Abstract states may lack information about the state of
some processor components, e.g., caches, queues, or predic-
tors. Transitions of the pipeline may depend on such missing
information. Thus the abstract pipeline model becomes non-
deterministic even though the concrete pipeline is determin-
istic. When dealing with this non-determinism, one could be
tempted to design a WCET analysis such that only the locally
most expensive pipeline transition is chosen. However, in the
presence of timing anomalies [5], [6] this is unsound. Thus,
the analysis has to follow all possible successor states.

Path Analysis: Using the results of the preceding loop
and value analysis and the pipeline analysis phases, the path
analysis estimates the worst-case path and computes a safe
WCET estimate. The analysis translates the control-flow graph
with the basic block timing bounds determined by the pipeline
analysis and the loop (and recursion) bounds derived by the
loop and value analysis into an integer linear program [7].
The solution of the ILP yields the worst-case path and a safe
WCET approximation.

The WCET analyser aiT implements this architecture,
cf. http://www.absint.de/ait, and has been shown to determine
precise execution-time bounds [4], [8]–[10]. aiT has been
used in the aeronautics and automotive industries.

B. AIS Annotations

Apart from the executable, aiT needs user input to find a
result at all, or to improve the precision of the result. The most
important user annotations specify the targets of computed
calls and branches and the maximum iteration counts of loops
(there are many other possible annotations).

Targets of Computed Calls and Branches: For a correct
reconstruction of the control flow from the binary, targets of
computed calls and branches must be known. aiT can find
many of these targets automatically for code compiled from C.
This is done by identifying and interpreting switch tables and
static arrays of function pointers. Yet dynamic use of function
pointers cannot be tracked by aiT, and hand-written assembler
code in library functions often contains difficult computed
branches. Targets for computed calls and branches that are not
found by aiT must be specified by the user. This can be done
by writing specifications of the following forms in a parameter
file called AIS file.

Example: The library routine C_MEMCPY in TI’s standard
library for the TMS470 consists of hand-written assembler
code. It contains two computed branches whose targets can
be specified as follows:

instruction "C_MEMCPY" + 1 computed
branches to pc + 0x14 bytes, pc + 0x24 bytes;

instruction "C_MEMCPY" + 2 computed

branches to pc + 0x10 bytes, pc + 0x20 bytes;

Loop Bounds: WCET analysis requires that upper bounds
for the iteration numbers of all loops be known. aiT tries
to determine the number of loop iterations by loop bound
analysis, but succeeds in doing so only for loops with con-
stant bounds whose code matches certain patterns typically
generated by the supported compilers. Bounds for the iteration
numbers of the remaining loops must be provided by user
annotations.

Example: The following annotation specifies that the first
loop in prime has the loop test at the end and is executed at
most 10 times:

loop "prime" + 1 loop end max 10;

C. Motivating Example

Bernat and Holsti [11] proposed a “wish list” regarding
the information a compiler should provide to a WCET analysis
tool chain. Some of this information is already made available.
For example, the compiler can generate line number informa-
tion that provides a mapping of source code to object code.
However, the compiler omits most of the information that can
be useful for timing analysis.

func: 0x31878 e_rlwinm r6, r6, 24, 27, 29
0x3187c e_add2is r6, 0x30000
0x31880 e_lwz r7, 0x1888(r6)
0x31884 se_mtctr r7
0x31886 se_bctr

Fig. 2. Compiler-generated switch table code that lacks a size check on the
index register r6 (DiabData v5.8 compiler for PowerPC).

Consider the code snippet of the function func depicted
in Figure 2, which represents the PowerPC object code for a
switch table. The register r6 contains the value of the switch
table index. The first instruction at 0x31878 left-rotates the
register value by 24 bits and masks out all bits except for the
least significant bits 3, 4 and 5. Hence, the register r6 can
accept eight different values (i.e., r6 = 22i for 0 ≤ i < 8).
The next instruction adds the constant 0x30000 to r6. The
e_lwz instruction reads a 32bit word from read-only memory
at 0x31888 + r6. The remaining instructions move the value
read from memory into the ctr register and branch to ctr.

Usually, the compiler generates a switch table size check
to branch to the default case if the switch expression (i.e., the
index) exceeds the switch table range. In the above example,
the compiler has omitted the size check. Without further user
annotations aiT cannot safely determine how many cases
are being addressed by the code snippet. A naive assumption
would be that eight targets are possible because r6 can only
accept eight different values. However, the compiler could have
known statically that some index values are not feasible at all,
which would render a reconstruction of the program control-
flow based on this assumption invalid.

http://www.absint.de/ait


Fig. 3. The compiler should preserve information about program structure
and flow constraints, while let optimisations be guided by timing analysis
results.

At compile time the real switch table size is known. Hence,
the compiler can provide all feasible control-flow successors in
form of intermediate annotations to WCET analysis. Providing
this information ensures a correct control-flow reconstruction.

There are other scenarios where the compiler can provide
information to aid WCET analysis. Consider, e.g., a loop where
the compiler unrolls the first four loop iterations. If the loop
analysis is unable to infer a loop bound automatically the user
has to provide a safe upper bound. The user is usually unaware
of code optimisations, such as loop unrolling. Again, if the
compiler provided that knowledge, a WCET analysis would
certainly be able to compute tighter timing bounds.

IV. COMPILER

Prior to WCET analysis the compiler needs to translate
a program specification written in a high level programming
language to an executable for the hardware platform.

Within T-CREST, we develop a processor from scratch
that is designed for high time predictability [1]. The archi-
tectural features of this processor, which is named Patmos,
are carefully designed to improve performance yet remain
inherently timing analysable. An integral part of the design
philosophy is to use static (compile-time) alternatives for
commonly used performance-enhancing features at runtime,
to reduce the dynamic behaviour and state of the processor
that is not visible or cannot be controlled by the code at the
instruction set architectural (ISA) level. In conformance with
this philosophy, the compiler must generate code that targets
the Patmos ISA and exerts control over these components.

Besides the hardware architectural means to obtain tight
WCET bounds, we pursue a tight integration of the compilation
process and timing analysis, as illustrated in Figure 3. On one
hand, the compiler preserves information available during the
compilation process that usually is discarded but otherwise
would be valuable for automated and precise timing analysis.
This includes preserving information about the control-flow
structure, but also flow annotations provided by the user that

constrain the possible flow of control, e.g., bounds on the
maximum number of loop iterations (loop bounds). On the
other hand, results from timing analysis are fed back to the
compiler, to guide optimisations that aim at reducing the
guaranteed worst-case performance.

A. Support for the Patmos Time-Predictable Processor

The architectural design for time predictability requires
dedicated support from the compiler.

The processor features a predictable, statically scheduled
dual-issue RISC pipeline with a fully predicated instruction set.
The absence of dynamic instruction reordering and assignment
to the available functional units requires the compiler to create
a feasible instruction schedule, including respecting instruc-
tion latencies, bundling instructions for dual-issue and filling
delay slots of control-flow instructions. Predicated execution
is a requirement to support single-path code generation [12],
[13]. Single-path code aims at reducing the execution time
variability of tasks caused by input-data dependent control-
flow decisions.

In terms of local memory, Patmos provides a set of
specialised caches and a data scratchpad, which are optimised
for different uses [14]. The reduced interference between
the memories potentially simplifies both hardware design and
cache analysis.

The method cache is an instruction cache that caches whole
functions, and allows for large continuous block-transfers, but
is more dynamic than a conventional instruction scratchpad.
It does not interfere with any data caches and cache misses
and cache updates only occur at a very limited number of
instructions. The compiler splits functions that otherwise are
too large to fit in the method cache as a whole, or for
optimisation purposes.

The stack cache is an explicitly managed local data cache
for the call stack. Similar to the method cache, spilling and
filling the stack cache to main memory is performed using
efficient block transfers and can only occur at special control
instructions the compiler needs to insert, typically at function
entries, calls and returns. The compiler can allocate data
objects to the stack frame for which it can guarantee that the
stack frame is not evicted while they are live (e.g. register spill
slots, local variables with fixed size). The stack cache also does
not interfere with other caches.

Additionally to a set-associative data cache with LRU
replacement policy and write-through write policy to facilitate
precise cache analysis, Patmos provides a local data scratch-
pad memory with very low and constant access time.

The Patmos ISA exposes the type of physical memory
accessed in typed memory instructions. Hence, the compiler
generates different instructions for accessing the main memory
through the data cache, or for accessing data on the local
stack cache or scratchpad memory. Patmos provides special
instructions to bypass the data cache in order to retain the
cache state in cases where storing data in the cache is not
beneficial due to the lack of spatial or temporal locality, and
is a means to obtain more precise cache analysis results in the
architectural analysis phase, cf. Section III-A.



Fig. 4. Compiler Tool Chain Overview

B. Compilation Tool Chain

Figure 4 gives an overview of the compiler tool chain. The
compiler is based on the LLVM compiler framework [15].
At the beginning of the compilation process, each C source
code file is translated to LLVM intermediate representation
(bitcode) by the C frontend clang. The user application
code and static standard and support libraries are linked
on this intermediate level by the llvm-ld tool, presenting
subsequent analysis and optimisation passes as well as the code
generation backend a complete view of the whole program.
This control-flow graph oriented intermediate representation
is particularly suitable for generic target independent optimi-
sations, such as common subexpression elimination, which are
readily available through llvm-ld. The llc tool constitutes
the backend translating LLVM bitcode into machine code for
the Patmos ISA, addressing the target-specific features for time
predictability. In addition to the machine code, the backend
exports complete information about the control-flow structure
on both bitcode and machine code, a relation between these
two representations, as detailed in Section V. The backend
produces a relocatable ELF binary containing symbolic address
information, which is processed by gold,1 defining the final
data and memory layout, and resolving symbol relocations.
An important property of this compilation flow stems from
the fact that the application is already linked at intermediate
level: Optimisations and the code generator have a complete
view of the program that is necessary to optimise the WCET.

V. INTEGRATION OF COMPILER AND WCET ANALYSIS

Bernat and Holsti [11] identify four categories of features
the compiler should provide to support WCET integration:
providing information about the source code’s semantics, re-
lating source and machine code, passing information about
machine code to the compiler, and control over performed
optimisations and machine code generation. As the WCET
analysis tool carries out its analysis on binary code, we

1gold is part of the GNU binutils, see http://sourceware.org/binutils/

interpret the first two categories as the challenge to translate
information from source code or intermediate code to machine
code. This information includes e.g. points-to sets, targets of
indirect calls or additional flow information, and stems from
both analysis tools operating on higher-level representations
and user annotations. Approximate relations between machine
code and source code are made available by existing compilers.
While this information is useful for providing feedback to hu-
mans, it is not suitable for performing sound WCET analysis.

In addition to the transformation of information between
high-level representations and the binary, we are concerned
about the exchange of information between compiler and
WCET analysis tool at the machine-code level. The machine-
code specific information that is crucial to WCET analysis
are the structural properties (jump tables, indirect calls) and
information about accessed memory locations.

We do not only provide the compiler’s knowledge to the
WCET analysis tool, but also want to use WCET analysis
results to direct optimisations. The WCET analysis tool should
thus provide the WCET of program fragments (functions,
loops, basic blocks), as well as information on the worst-case
path and WCET-criticalities [16].

A. Compilation Flow and Preservation of Metainformation

Due to the complexity of modern compilers and their
optimisations, transforming information from the source level
to the machine-code level is not trivial to retrofit into an
existing industrial-quality framework. In order to manage the
complexity of this problem, we subdivide the transformation
into a number of steps. The compilation flow described in
Section IV permits to use different strategies for the preser-
vation of meta-information in different stages of compilation.
We outline this strategy below.

From Source Code to Bitcode: The translation from
source code to the platform-independent intermediate represen-
tation, which is performed by clang, translates information
available only at the source-level (e.g., annotations in form
of pragmas) to bitcode meta-information. In order to separate
concerns, no optimisations are performed at this stage.

High-Level Optimisations: High-level optimisations are
performed on bitcode, although the same considerations apply
to source-to-source optimisations. Some of the available high-
level optimisations perform major structural changes to the
program (e.g., loop unswitching). Consequently, these opti-
misations need to be extended to preserve meta-information
which is relevant for timing analysis but not necessarily for
the compiler backend. LLVM partly addresses this problem,
as it provides infrastructure for bitcode meta-information, and
helps to transform or invalidate debug information during
optimisations. Techniques for maintaining for example loop
bounds, which are crucial for WCET analysis, have been de-
veloped [17], but require considerable additional effort for each
optimisation. However, as these optimisations are implemented
in a platform-independent way, it is likely that the investments
on preserving meta-information pay off.

From Bitcode to Machine Code: In order to preserve
meta-information in the compiler backend, the compiler main-
tains relations between basic blocks (and memory accesses) at

http://sourceware.org/binutils/


the bitcode and the machine code level. Flow facts are trans-
formed to machine code using these relations. Thus it is not
necessary to add dedicated support for flow-fact updates in the
backend. Those high-level optimisations that perform structural
changes that cannot be expressed in our relation model, need
to be (and are) implemented as bitcode optimisations.

Relating Machine Code and Linked Binaries: The
relation between relocatable machine code that is emitted by
the compiler and the binary executable generated by the linker
is simplified by two measures: first, global optimisations are
carried out on the bitcode level, but not on the machine-code
level. Second, the compiler and linker ensure that all symbolic
names necessary to specify information for the timing analysis
tool are generated and stored in the binary. This permits
all information about machine code to be specified without
referring to addresses.

B. Information Exchange Language and Tools

At the core of the information exchange strategy is the Pat-
mos Metainfo Language (PML) file format, and the associated
tool chain to extract, import and transform information about
the program related to WCET analysis.

PML is designed to allow information exchange with
different tools at both the bitcode and machine code level.
Fundamental concepts such as control-flow graphs, loop nest
trees or linear flow constraints are thus defined in a way which
is applicable to both bitcode and machine code. The relation
between optimised bitcode and machine code is also stored,
and allows to transform information obtained from analysis
tools operating at the bitcode level. At the machine code level,
the PML format attempts to be largely platform independent.
To this end, common machine-code related concepts, such as
jump tables, can be specified in a uniform way.

In order to simplify adoptions to new target architectures,
we integrate a platform-agnostic framework for exporting in-
formation about bitcode and machine code into LLVM, so that
particular target backends only need to provide some target-
specific information, and may extend the exporter’s function-
ality as needed. The integration with aiT, and other analysis
tools, is realised by a set of routines to parse, transform, merge
and generate program information, which we packaged in the
platin (Portable Llvm Annotation and TImiNg) toolkit.

For timing analysis with the aiT tool, an AIS annotation
file is exported from the PML file, which in conjunction with
the final executable serves as input to the analyser. When the
WCET analysis is complete, the analysis results are merged
into the PML database. In a second iteration, the compiler uses
this information to guide optimisations for improving timing
predictability and worst-case performance.

C. Current State

The integration of compiler and WCET analysis is un-
der active development. At the current implementation stage,
support for emitting the control-flow structure of both the
bitcode and machine code, as well as the relation between
them is present in llc. The resulting PML database is then
subsequently manipulated by the tools of the platin toolset.

In addition to routines for merging information from differ-
ent PML files to improve modularity, and a visualisation tool
to present control-flow information to humans, functionality to
interact with the timing analyser is implemented. In particular,
platin includes a tool to export an AIS annotation file from
a PML database, and a tool to parse the analysis results and
merge them into the PML database.

We also integrated the Patmos simulator into the platin
toolset, which enables us to extract information from simula-
tion traces. Among other useful applications, flow information
extracted from simulator traces comes in handy to get started
with timing analysis: Where otherwise the aiT analysis tool
would not be able to perform analysis due to the lack of
loop bounds, the iteration counts extracted from the trace
are provided to the tool. This allows the programmer to get
an initial (though potentially unsafe) estimate on the timing
behaviour of the application in early development stages.

Support for user-provided flow annotations above the bit-
code intermediate level is not yet implemented in the compiler.
It involves extending the clang frontend to correctly translate
flow annotations (most importantly loop bounds) in the form of
C pragmas from the AST-oriented representation to the CFG-
oriented bitcode representation, and extending selected relevant
CFG-manipulating transformations at bitcode level (e.g., loop
unswitching) to co-transform the flow annotations; both of
which we plan to implement in the near future.

VI. EXAMPLE

In this section, we present an example that (1) demonstrates
the integration of the compiler and the WCET analysis tool,
and (2) hints at the versatility of the platin toolset.

Base64 is an encoding scheme to represent binary data
in an ASCII string format by translating it into a radix-64
representation. Therefore, Base64 encoding converts 3 octets
into 4 encoded characters. Figure 5 depicts the C source code
of a simplified version of the decoding function. Depending
on the current position within four read characters, binary
data is written with different bit offsets to the target buffer.
This behaviour is realised with a state-machine implemented
as switch statement.

The switch statement eventually gets translated to an in-
direct branch facilitating a jump table, Figure 6. Note that
due to the lack of a default case, no switch table size check is
generated by the compiler (cf. Section III-C). However, instead
of putting the burden on the analysis tool to reconstruct the
possible branch targets from the object code, which is not
always possible anyway, this information is readily available
and contained in the PML database that is emitted additionally
to the binary by the backend. Figure 7 depicts the machine
control-flow graph as contained in the PML database, where
the branch targets are known to be basic blocks 4, 5, 6, or 7.

In order to be WCET-analysable, an upper bound of the
while-loop needs to be known statically. In practice, the
programmer would annotate the loop bound either on assembly
level, a procedure which is tedious and error prone, or, as
desired in the T-CREST project, on the source code where the
annotation would be co-transformed during compilation.



const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz0123456789+/";

const char Pad64 = ’=’;

int b64_pton(char const *src, char *target, size_t targsize)
{
int tarindex=0, state=0;
char *pos, ch;

while ((ch = *src++) != ’\0’) {
if (ch == Pad64) break;

pos = strchr(Base64, ch);
switch (state) {

case 0:
target[tarindex] = (pos - Base64) << 2;
state = 1;
break;

case 1:
target[tarindex] |= (pos - Base64) >> 4;
target[tarindex+1] = ((pos - Base64) & 0x0f) << 4 ;
tarindex++;
state = 2;
break;

case 2:
target[tarindex] |= (pos - Base64) >> 2;
target[tarindex+1] = ((pos - Base64) & 0x03) << 6;
tarindex++;
state = 3;
break;

case 3:
target[tarindex] |= (pos - Base64);
tarindex++;
state = 0;
break;

default:
__builtin_unreachable();

}
}
return (tarindex);

}

Fig. 5. Base64 decoding function. The switch statement with unreachable
default branch is translated to a jump table.

.LBB2_3:
16b0: 87 c2 10 0d 00 01 92 28 shadd2 $r1 = $r1, 102952
16b8: 02 82 11 00 lwc $r1 = [$r1]
16bc: 00 40 00 00 nop

* 16c0: 07 00 10 01 br $r1
16c4: 00 40 00 00 nop
16c8: 00 40 00 00 nop

Fig. 6. The assembly generated for b64_pton contains an indirect branch
(marked with ∗). No switch table size check is performed.

Lacking an implementation thereof at the current state, we
use the opportunity to demonstrate the benefit of the integration
of the Patmos simulator pasim into the platin toolset, as
illustrated in Figure 8: We simulate the decoding function with
a string of maximally allowed length as input data and let
the trace-analysis tool extract the loop iteration counts for the
executed loops, which are annotated back to the PML database.
Finally, an AIS annotation file is exported from the latter,
containing the relevant annotations enabling WCET-analysis,
as shown in Figure 9.

VII. RELATED WORK

The WCET-aware C Compiler (WCC) [18] is a custom
developed C compiler that focuses on WCET optimisation,
targeting Infineon TriCore microcontrollers. It uses a machine-
independent high-level intermediate representation called ICD-
C for high-level optimisations, and a retargetable low-level
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Fig. 7. Machine-code level control-flow graph of the b64_pton function
from Figure 5.

Fig. 8. Flow diagram when using platin to extract loop bounds of a
simulation trace.

intermediate representation called ICD-LLIR for machine op-
timisations and code generation. WCET analysis is performed
by the AbsInt aiT tool at ICD-LLIR level and adds analysis
results such as basic block execution times and encountered in-
struction cache misses, as well as information about the found
worst-case path to the ICD-LLIR. The compiler maintains a
mapping between the blocks of the ICD-C and ICD-LLIR
representations, so that WCET analysis results can be used
by high-level optimisations on ICD-C as well.

The Java Optimized Processor (JOP) [19] implements the
Java Virtual Machine (JVM) in hardware and is designed to
simplify WCET analysis. The processor executes a RISC-style
microcode instruction set, with well-defined timing behaviour.
An additional pipeline stage translates JVM instructions to
a sequence of microcode instructions, in a predictable way.
As the processor executes Java bytecode, there is no tradi-
tional compiler backend in the JOP tool chain. The bytecode
instructions executed by JOP provide information about the
static types of variables, dynamic dispatch targets and accessed
memory areas, solving some of the integration challenges by
design. Optimisations are performed on bytecode and high-
level optimisations (inlining, loop optimisations) preserve user-
provided information, such as loop bounds [20].

Precision Timed Machines (PRET) [21], [22] are a com-
puter architecture designed for repeatable and predictable
performance. Characteristic features are the thread-interleaved
pipeline, an exposed memory hierarchy and timing instruc-
tions, exposing timing behaviour to the ISA. Most notably,
a deadline instruction sets the execution-time limit for subse-
quent instructions until the next deadline instruction is encoun-
tered, which then stalls the execution until the specified time
has elapsed. A code generator could leverage this instruction to
create applications with repeatable timing, i.e., low execution-



instruction ".LBB2_3" + 16 bytes branches to
".LBB2_4", ".LBB2_5", ".LBB2_6", ".LBB2_7";
# jumptable (source: llvm)

...
loop ".LBB2_1" max 95 ;

# local loop header bound (source: trace)

Fig. 9. The AIS annotations exported from the PML database for the
b64_pton function.

time variability. The absence of implicit hardware state and de-
pendencies between different hardware threads aims at making
the timing behaviour composable and easily analysable.

Kirner et al. transform flow information in parallel to
high-level optimisations such as loop interchange [17]. Their
transformation technique requires control-flow update rules for
optimisations that modify the control-flow graph or change
loop bounds or other flow constraints. These update rules
specify the relation between edge-execution frequencies be-
fore and after the optimisation, and are used to consistently
transform all flow constraints affected by the optimisation. The
method was implemented for source-to-source transformations
but should be applicable to bitcode as well.

VIII. CONCLUSION

The T-CREST project aims at constructing a time-
predictable multi-core platform for embedded systems. This
platform comprises both the Patmos processor architecture
and an integrated compilation and WCET-analysis framework
that specifically targets at generating time-predictable code,
optimised in order to keep the WCET of the code short.

To achieve time-predictability and WCET optimisation the
T-CREST compiler and the aiT tool maintain and exchange in-
formation about the code’s structure, possible execution paths,
and code timing. The information exchange is supported by a
number of tools and routines that process and manage timing-
relevant information about the code at all code-representation
levels of the compilation process, without a gap. A specific
information-exchange language and file format, called PML,
is used to support the seamless tool interaction.
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