
Router Designs for an Asynchronous
Time-Division-Multiplexed Network-on-Chip

Evangelia Kasapaki, Jens Sparsø, Rasmus Bo Sørensen
DTU Compute

Technical University of Denmark

Email: evka@dtu.dk, jspa@dtu.dk, rboso@dtu.dk

Kees Goossens
Faculty of Electrical Engineering

Eindhoven University of Technology

Email: k.g.w.goossens@tue.nl

Abstract—In this paper we explore the design of an asyn-
chronous router for a time-division-multiplexed (TDM) network-
on-chip (NOC) that is being developed for a multi-processor
platform for hard real-time systems.

TDM inherently requires a common time reference, and
existing TDM-based NOC designs are either synchronous or
mesochronous, but both approaches have their limitations: a
globally synchronous NOC is no longer feasible in today’s sub-
micron technologies and a mesochronous NOC requires special
FIFO-based synchronizers in all input ports of all routers in order
to accommodate for clock phase differences. This adds hardware
complexity and increases area and power consumption.

We propose to use asynchronous routers in order to achieve a
simpler, more robust and globally-asynchronous NOC, and this
represents an unexplored point in the design space.

The paper presents a range of alternative router designs. All
routers have been synthesized for a 65 nm CMOS technology,
and the paper reports post-layout figures for area, speed and
energy and compares the asynchronous designs with an existing
mesochronous clocked router. The results show that an asyn-
chronous router is 2 times smaller, marginally slower and with
roughly the same energy consumption, while offering a robust
solution to the clock distribution problem. The paper further
explores “clock-gating” of the individual pipeline stages in the
asynchronous routers, and shows that this can lead to significant
power savings.

I. INTRODUCTION

Today the preferred interconnect used in general-purpose

chip multi-processors (CMP) and in multi-processor systems-

on-chip (MPSOC) is some form of packet switched network-

on-chip (NOC) and “networks-on-chip” has been an active

area of research for more than a decade. The choice of NOC

for a given platform depends on many factors and requirements

including: bandwidth requirements, types of traffic (streaming

or address-space read/write transactions), provision of service

guarantees, clocking and timing issues.

The context for the work presented in this paper, is a project

in which we are developing a general-purpose multi-processor

platform that is intended specifically for use in hard real-time
systems [1].

A generic illustration of a NOC-based multi-processor plat-

form is shown in Fig. 1(a). It consists of a set of so-called IP-

cores communicating through a packet switched structure of

routers and links. Typical IP-cores are processors with some

 IP
NI

R

 IP
NI

R

 IP
NI

R

 IP
NI

R

 IP
NI

R

 IP
NI

R

 IP
NI

R

 IP
NI

R

 IP
NI

R

NI1

R2 R3R1

R5 R6R4

NI2 NI3

 IP2

NI4 NI5 NI6

 IP3 IP1

 IP5 IP6 IP4

Asynchronous

Mesochronous
(TDM clock)

(a) (b)

Independently
clocked IPs

Figure 1. (a) Structural organization of a generic NOC-based multi-core
platform. (b) Timing organization of a platform using the asynchronous time-
division-multiplexed NOC explored in this paper.

amount of local memory, blocks of shared memory or IO-

devices, and typical NOC topologies are planar structures like

meshes and tori. Each IP-core is connected to the network

through a network interface (NI) that translates (core-specific)

read/write transactions into (NOC specific) packets. Moreover,

the NIs typically implement clock domain crossings.

Most published NOCs only support best-effort traffic and

some published NOCs offer multiple priority-levels in order

to support different qualities of service. Such NOCs are

inadequate for hard real-time systems. In order to provide

the time predictability that is needed to guarantee worst

case execution time (WCET), a NOC for a hard real-time

platform must provide some form of end-to-end circuits. This

can be FPGA-style physical connections or virtual circuits

implemented using time-division-multiplexing (e.g. Æthereal

[2]) or using non-blocking routers combined with rate control

[3] (e.g. Mango [4]).

Furthermore, in order to be practically viable in today’s sub-

micron semiconductor technologies, some form of globally-

asynchronous locally-synchronous (GALS) organization of the

hardware platform is a requirement [5]. Local islands of

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.40

319

circuitry like IP-cores and NIs, Fig.1(a), can be implemented

synchronously. But because the NOC spans the entire chip is is

not possible to distribute a clock with zero skew to all routers.

Solutions to this include the use of mesochronous routers or

fully asynchronous routers.

A more detailed discussion of issues related to real-time

systems and implementation of GALS-systems is provided in

Section II. Based on this discussion we have decided for a

statically scheduled TDM-based NOC, to deal with hard real-

time requirements, using asynchronous routers, to face the

clock distribution problem. The overall timing architecture of

the platform is illustrated in Fig.1(b) – a GALS-style design

using asynchronous routers, mesochronous NIs and (possibly)

independently clocked IP-cores.

Two main decisions form the basis for our NOC. Firstly, we

decided for a TDM-based NOC because it avoids arbitration,

flow-control and buffering thereby reducing the network of

routers and links to the bare minimum – a pipelined structure

of multiplexers, wire segments and registers. Secondly, we

decided for an asynchronous router implementation because

it avoids the FIFO-synchronizers used in mesochronous de-

signs. Asynchronous circuits are normally larger than their

asynchronous counterparts, but in this case the asynchronous

router is smaller than the corresponding clocked mesochronous

router.

The use of asynchronous routers in a TDM-based NOC

represents a point in the design space that has not been ex-

plored before, and the contribution of this paper is a thorough

exploration of a range of such router designs. Additionally, tha

paper contributes with the application of the idea of gating

in asynchronous designs and studying the effect of it. The

designs have been implemented in 65 nm CMOS standard

cell technology and the paper reports post-layout results on

area, speed and energy consumption. The paper achieves

asynchronous designs that are smaller in area than alternative

clocked solutions.

The paper is organized as follows. In Section II we discuss

related work and provide some necessary background on

NOCs for real-time systems and implementation of GALS

systems. Section III presents the overall architecture of our

NOC-based multi-processor platform. Section IV describes

the design of the baseline synchronous router design (aelite

[6]), and a mesochronous implementation of the same. Sec-

tion V presents a number of asynchronous router designs:

(i) a straightforward four-phase bundled-data design, (ii) a

two-phase bundled-data design, (iii) a 2-phase bundled-data

that implements “clock gating” to avoid switching activity in

unused router ports, and (iv) a 2-phase bundled-data design

with “clock gating” that uses delay-insensitive signaling on

the links. Section VII explains the implementation and EDA-

tool flow. Section VII provides results for the four designs,

and finally Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section reviews related work in the area of NOCs for

real-time systems and GALS timing organization

A. Real-Time NOCs

A NOC for a real-time platform must allow guarantees on

bandwidth and latency to be made for individual point-to-point

transactions. This calls for a solution that provides some form

of end-to-end connection; physical or virtual.

Examples of NOCs offering physical connections is the

NOC used in the 4S-platform [7] that offers initialization-time

FPGA-style configurable connections and SoCBUS [8] that

implements a dial-up mechanism. In both cases connections,

when established, own resources exclusively, so real-time

guarantees are easily provided. The downside is a (potential)

low utilization of resources. Furthermore, in SoCBUS a dial-

up attempt cannot be guaranteed to succeed.

The use of virtual channels allows sharing of resources.

Virtual channels can be implemented in two fundamentally

different ways. One approach is to use TDM where the

resources (routers and links) are used in a time-multiplexed

fashion according to a static schedule. Examples are Æthereal

[9], aelite [10], Nostrum [11] and TTNoC [12]. The other

approach is to use non-blocking routers with rate control [3].

An example of the latter is the asynchronous MANGO NOC

[4]. In MANGO several connections may share a link but

each connection has a private (virtual-channel) buffer in every

router along the connection. Additional hardware complexity

is caused by the larger crossbar that follows from the use

of virtual channel buffers and from the arbitration and flow

control that is needed in every output port. It is interesting

to observe that a typical MANGO router is 10 times larger

than a aelite-router (the smallest of the TDM-based routers)

[2], [13]. Based on this observation, we decided to explore the

design of an asynchronous aelite-style TDM-based router.

B. GALS Timing Organization

Distributing a clock signal across a chip and achieving

timing closure throughout the whole chip is becoming increas-

ingly difficult due to parameter uncertainty and variability [5].

A GALS-style architecture reduces these problems by dividing

the design into several independent clock domains and by

implementing some form of asynchronous communication

among these. A NOC-based multi-core platform naturally

supports a timing organization where the IP-cores and the

NIs constitute separate clock domains, and where the packet-

switched structure of routers and links, which spans the entire

chip, is implemented using techniques that are more robust to

timing uncertainties.

A mesochronous NOC represents a first step away

from a globally-synchronous design towards a more ro-

bust timing architecture. There are numerous solutions in

the field of mesochronous communication [14, Sec. 10.3.1].

Mesochronous considers same clock frequency, but a phase

difference is allowed. The choice also depends on the pre-

cise meaning of mesochronous: is the clock phase difference

assumed to be constant or is it allowed to drift within some

bounded interval. (Our design allows the latter).

The preferred solution in most of the published work on

mesochronous NOCs use small FIFOs. The bi-synchronous

320

FIFO presented in [15] has been used in DSPIN [16] and aelite

[2]. It consists of 5 clocked registers and some control logic.

Other works on aelite report using a more area-efficient full-

custom FIFO presented [17]. This design is an asynchronous

pipeline using latches instead of flip-flops, and in [10, Ch. 8] its

area is reported to be half of the area of the bi-synchronous

FIFO. A later paper [18] presents a FIFO that is optimized

specifically for mesochronous systems. The NOC described

in [19] merges this new FIFO into the virtual-channel buffers

of the router. As TDM-based router does not have such buffers

this is not an option and the use of mesochronous FIFOs is

pure overhead. For the aelite NOC the mesochronous FIFOs

are reported to more than double the area of a router [10,

Ch. 8].

A more straightforward solution to achieve robustness

would be an entirely asynchronous implementation of the

routers and links. A representative set of asynchronous NOCs

are CHAIN [20], MANGO [4] and ANOC [21]. The only

asynchronous NOC that provides hard real-time guarantees is

MANGO, but as stated above its hardware cost is considerable

compared to the simple TDM-based aelite router. And as

previously mentioned, this is what motivated our work on

exploring the asynchronous TDM-based router designs. Initial

studies of an asynchronous version of an aelite style router

was reported in [22], but this work only considered the router

and it was not continued.

Finally we mention that a GALS-style multi-processor plat-

form may use bi-synchronous FIFOs with flow-control [15],

[17] in the interfaces between the IP-cores and the NIs and in

the interfaces between the NIs and the routers. This will allow

the use of independently clocked IP-cores.

III. OVERALL PLATFORM ARCHITECTURE

In order to provide some background and context for the

router designs that are presented in the following, this section

provides a brief introduction to time division multiplexing as

used in our NOC and to the architecture of the multi-core

platform in which the asynchronous TDM-based NOC is being

used.

Time division multiplexing (TDM) allows several end-

to-end communication circuits to share the same physical

resources (here the links and routers of the NOC). Time is

partitioned into fixed-duration time-slots, and packets/flits are

injected into the NOC according to a predetermined periodic

static schedule. The bandwidth and latency of a virtual circuit

depends on the number of slots it is assigned within a schedule

period. The choice of a TDM-based NOC is outside the scope

of of this paper. For more insight on this issue the interested

reader is referred to [2].

The NOC uses packet switching and wormhole routing

and the TDM-schedule ensures that a packet/flit can traverse

the NOC without colliding with any other packet/flits. The

NOC presented in this paper uses source routing, and it

is thus similar to the aelite NOC [6]. The combination of

TDM-scheduling and source-routing leads to the simplest

possible router implementation – a pipelined multiplexer that

Processor

IM/I$ DM/D$
DMA

Front end

Back end

Processor core

Network
Interface

Router
Link

Link

Link

Link

OCP

Link NOC-specific:
 - Packet format
 - Signalling protocol

(a)

SPM

Processor

IM/I$ DM/D$

DMAFront end

Back end

Processor core

Network
Interface

Router
Link

Link

Link

Link

OCP

Link NOC-specific:
 - Packet format
 - Signalling protocol

(b)

SPM

Figure 2. (a) Block-diagram showing the conventional architecture of
processor node. The figure expands the view of Fig. 1. (b) Block-diagram
using the new area-efficient NI-design presented in [24].

switches packets/flits from input ports to output ports – and

this flow-based operation is a good fit to an asynchronous

implementation. With this router design, all the intelligence

(including routing-tables and schedule-tables) are in the NIs

and a NI is a synchronous circuit that is synthesized from

an RTL-description. The router itself is a simple and shallow

pipeline without buffers, arbitration and flow-control – features

that are typically found in routers and which are responsible

for most of the area of typical routers [13].

As shown in Fig. 2(a) a processor node for our platform

comprises the processor itself, instruction and data memories

or caches, a local private scratchpad memory (SPM) and one

or more DMA-controllers. This architecture is similar to the

CompSoC platform [23]. The architecture supports message

passing implemented by DMA-driven transfer of blocks of

data from the local SPM to SPMs in remote nodes. The SPM

in a node is dual-ported in order to allow the processor and

the DMA-controller to access it without interfering with each

other. A separate tree-shaped NOC (not shown) provide access

to a shared block of memory and this will serve the instruction

and data memories or caches. The entire platform has one

global address space and there is no hardware support for

cache coherency.

The network interface (NI) consists of a front-end that is

responsible for the interfacing to the processor node (that use

a read/write style protocol like OCP), and a back back end

that is responsible for the interfacing to the routers (that use

a packet-based protocol). During a slot in the TDM-schedule

the NI can transmit a packet/flit into the NOC and receive a

packet/flit from the NOC. For completeness we mention that

the actual implementation of our platform use a novel area-

efficient NI micro-architecture shown in figure 2(b) [24].

321

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

34

. . .
4

34

34

4

34

34

34

selection

da
ta

in5 out5

out0

Xbar

HPU

HPU

in0

in
pu

t p
or

ts

ou
tp

ut
 p

or
ts

Figure 3. Block diagram showing the micro-architecture of a synchronous
TDM router. The design is a 3-stage pipeline: (i) link traversal, (ii) header
parsing unit (HPU) and (iii) traversal of the crossbar switch (Xbar)

IV. THE CLOCKED ROUTER DESIGNS

This section presents our re-implementation of the syn-

chronous and the mesochronous aelite routers [6]. It serves as

the starting point for the asynchronous designs and since all

routers will be implemented in the same technology it enables

a fair apples-to-apples comparison of the designs.

A. The Aelite Router

The aelite router is a 3-stage pipeline as shown in Fig 3. The

three pipeline stages are: (i) link traversal, (ii) header parsing

unit (HPU) and (iii) traversal of the crossbar switch (Xbar).

As already mentioned we use source routing of packets. A

packet consists of one or more flits and a flit consists of 3

phits. The first flit in a packet consists of a header-phit and

two data-phits. The router is agnostic to the number of flits in

a packet but the current NI-design uses packets consisting of

a single flit. A phit is 32 bits of data or header supplemented

by 2 type-bits: a valid bit that indicates if a phit is present

in the current clock cycle and a bit that identifies the header

phit. The original aelite-design uses a different encoding of

the type bits. A router typically has five ports, and this allows

construction of mesh-type topologies.

The header phit contains the route and the local address in

the destination SPM. Each input port of the router has a HPU

that extracts two bits from the route that are used to select the

destination output port of the router. At the same time the HPU

shifts the header phit two positions to align the header for the

next router along the path. The path through the crossbar is

locked until the last phit of the packet has propagated through

the crossbar.

The fact that the pipeline depth matches the number of phits

in a flit allows the TDM-scheduling to work at the flit-level

rather than the phit-level. This is an engineering compromise.

The advantage is smaller schedule tables. The disadvantages

are that two independent parameters, the pipeline depth and

the number of phits in a flit, are linked. It also means that if

links are to be pipelined, then 3 pipeline stages must be added.

B. The Mesochronous Aelite Router Design

A mesochronous router obtained by extending the clocked

router described above with FIFOs on all input ports. One

reqreq Matched Delay
ack

0
1>> 2

data

[3
2]

 T
yp

e
[3

3]

data

[1
:0

]

Latch

En

sel_internal
selOne-hot

decoder

34
34

data valid

Figure 4. Diagram of the HPU implementation in the asynchronous designs.

of the published mesochronous aelite routers uses the bi-

synchronous FIFOs from [15] and this is one of the designs

that we have explored. The implementation of a FIFO uses

standard cells and consists of 5 registers and token-ring based

read and write pointers. This FIFO provides flow control

signals and can sustain a throughput of one data-item per cycle

for a clock skew of plus/minus one clock period. Other options

for the mesochronous synchronization could be the full-custom

FIFOs from [17] or the FIFO design from [18]. As flow control

signals are not needed in a mesochronous system, the latter

use only 3 register stages – one stage based on flip-flops and 2

stages based on latches. We have not implemented this FIFO

but considering the standard cells involved we estimate its size

to be roughly half of the bi-synchronous FIFO.

V. THE ASYNCHRONOUS ROUTER DESIGNS

This section presents four alternative asynchronous router

designs.

A. Introductory remarks

Asynchronous circuits use handshaking among neighboring

registers/latches to control the transfer of data. This handshak-

ing can be 4-phase (return-to-zero) or 2-phase (non return-

to-zero). In one full handshake cycle one token (i.e. phit)

is forwarded from one latch stage to the next. In addition,

different encodings of data are possible. This means that a

range of asynchronous implementations exist. Readers who

are not familiar with asynchronous design are referred to a

textbook on the subject [25].

The designs that will be presented are a four-phase bundled-

data design ("4ph-bd"), a two-phase bundled-data design

("2ph-bd"), a 2-phase bundled-data with a “gating” mechanism

to avoid switching activity in unused router ports ("2-ph-bd-

g"), and a 2-phase bundled-data design with “gating” that uses

delay-insensitive, Level-Encoded Dual-Rail (LEDR) [26], on

the links ("2ph-bd/LEDR-g").

The asynchronous designs presented below all use the same

flit-format (3 phits per flit) and the same 3-stage pipeline. Due

to the use of handshake-latches in the pipeline stages, it is not

possible to store 3 consecutive tokens (i.e. phit) in a router.

For this reason the asynchronous router designs require TDM-

scheduling at the phit-level. There is no fundamental problems

in this, and the larger schedule-table has little impact on the

322

size of the NI. A deeper discussion of flit-level vs. phit-level

scheduling is beyond the scope of this paper.

B. A 4-phase Bundled-Data Design

The first design (4ph-bd) uses 4-phase bundled-data hand-

shaking and it is a straightforward implementation correspond-

ing to the clocked design, using handshake latches in the

place of clocked registers. A handshake latch is composed

of a regular enable latch and a simple 4-phase bundled-data

latch controller [25]. Delay elements are needed in the request

signal paths to match the propagation delays in the links, in

the HPU and in the crossbar.

The header parsing unit (HPU) follows the same design as

the Aelite router that is described in Section IV-A. The two

least significant bits of the route field are extracted and re-

coded into a one-hot (1-of-4) encoded control signal for the

crossbar. A diagram of the implementation of the HPU can be

seen in Fig. 4.

The crossbar switches an input to the specified output. It

is implemented using a handshake de-multiplexer for each

input port and a merge for each output port. With the one-hot

encoded select-signal from the HPU stage, each output of a de-

multiplexer can be implemented as an array of and-gates. With

this implementation the crossbar has only two levels of logic

resulting in a fast implementation. The control path contains

a join that synchronizes all request signals from the 5 input

ports, a join that synchronizes all the acknowledge signals

from the 5 output ports and a matched delay for the propaga-

tion delay of the crossbar. Each join is implemented using one

C-element, resulting in 2 C-elements for the synchronization

of ports.

It is important to note that in every handshake cycle the

crossbar consumes one token (i.e. phit) from every input port

and it produce one token (i.e. phit) on all output ports – the

crossbar is a strongly indicating function block [25]. This is

necessary in order to implement time division multiplexing

at the global level. The difference from a clocked design is

that routers are not synchronized and that the inherent FIFO-

behavior of asynchronous pipelines can accommodate timing

fluctuations.

C. A 2-phase Bundled-Data Design using LEDR Links

The rate at which phits can traverse the router depends on

the worst-case time it takes to perform a handshake cycle

transferring data from one handshake latch to the next. Chang-

ing from a 4-phase protocol to a 2-phase protocol can ideally

double the speed and (depending on the implementation) also

reduce the energy consumption. Furthermore, to make the

design robust against tolerances and fluctuations in gate and

wire delays and to allow plug-and-play composition of routers

and links, it may be desirable to use delay-insensitive signaling

on the links.

A good compromise between robustness and area-efficiency

is to make the links delay-insensitive and to implement the

router using bundled-data techniques. In order to avoid com-

plex decoding circuitry in the routers, in the we use LEDR

Xbar

HPU

HPU

FF
BD
to

LEDR

FF
BD
to

LEDR

LEDR
to

BD

LEDR
to

BD

2-phase Bundled-dataLEDR LEDR

HL

HL

HL

HL

Fig. 7 Fig. 8

Figure 5. Block diagram of the 2-phase bundled-data design using LEDR
links.

T=0 - - - -

Quiet

Phit-token Void-token

T=1 dn … d2 d1

Figure 6. The two types of tokens for communication on the links.

links. A block diagram of this router design (called 2ph-

bd/LEDR-g) is shown in Fig. 5 and explained below.

As mentioned in the previous section the crossbar switch

in the router relies on the supply of tokens from all inputs of

a router, to step into the next time slot. If no token arrives

at the input of a router, no progress will happen. When using

2-phase LEDR links one wire per bit switches for every token

sent, even if no data is transmitted.

This overhead can be reduced by not switching the 33 data

wires in cycles where phits are not transmitted. This can be

implemented at the port level by introducing two types of

tokens: Phit-tokens that carry a header phit or a data phit, and

void-tokens that carry an empty synchronization token. Fig. 6

illustrates the two types of tokens. The distinction between the

two types of tokens is already present in the form of the valid

bit explained in section IV-A.

The LEDR to bundled-data converter that is used in the

input ports of the router, see Fig. 5, is implemented as shown

in Fig. 7. The converter detects a token and its type in the

Sel
F

T C

Ri

Ai

Ro

Ao

Lt

Latch
ctl.

C

Latch

Type

Completion
Detection

Type
Detection

Token
Merge

Data
Data parity

Type
Type parity

Ack

En

Data

Type

Req

Ack

33

Gated 2-phase
bundled-data

Handshake latch

Latch

Data

En

Figure 7. Circuit implementation of the LEDR to 2-phase bundled-data
converter – the first pipeline stage of the router.

323

�������
����	
�

�
��	
�

��

�
����
��

��

Figure 8. Circuit implementation of 2-phase latch controller.

Figure 9. Circuit diagram of Bundled-data to LEDR converter [27].

Type Detection circuit. The select-element transitions the True

port if the token is a phit-token or the False port if the token

is a void-token. If the token is a phit-token the Token Merge

circuit synchronizes with the Completion Detection through

the C-element. The output of the Token Merge serves as the

request signal to the latch controller. The Type bit is stored in

the type latch. If the token is a phit-token the Data Latch is

enabled.

The latch controller used in the first two pipeline stages of

the router is the reduced complexity 2-phase micro-pipeline

latch controller from [28, Fig. 4] shown in Fig. 8. This design

avoids using a complex toggle element.

Some timing assumptions need to be followed for the

controller to work safely. The first assumption is that the latch

needs to be transparent sufficient time for the data to be latched

before the incoming acknowledge from the next stage changes

the phase to opaque. The second timing assumption is that

the latch needs to be opaque sufficient time before outgoing

acknowledge is sent back to the left controller and a new

handshake is initiated. Delays D1 and D2 are introduced to

fulfill these assumptions, respectively.

The last pipeline stage in the router contains a bundled-data

to LEDR converter, see Fig. 9. It is based on the circuit from

[27] modified to handle phit-tokens and void-tokens. If the

incoming token is a phit-token all four registers are clocked,

otherwise only the two Type registers are clocked. The toggle

flip-flop contains the phase of the token. The phase of the type

signals and the data signals will not always be equal.

D. A 2-phase Bundled-Data Design (with gating)

The results in section VII show that the 2ph-bd/LEDR-g

design is expensive in terms of area and energy consumption.

The reason is the encoding and decoding of the LEDR code

used on the links. For this reason we have implemented a

third design, 2ph-bd-g, that uses 2-phase bundled-data on the

links as well. The design uses the “gated 2-phase bundled-

data handshake latch” shown in the right hand side of Fig. 7.

In router ports propagating void-tokens this design avoids

enabling/clocking the 33 latches that hold the data-part of a

phit and the type bit indicating the header. Only the latch

holding the valid bit that is used to distinguish between phit-

tokens and void-tokens is enabled. This is similar to clock-

gating, and saves power related to driving the 33 enable inputs.

E. A simple 2-phase Bundled-Data Design (without gating)

We anticipated that the 2-phase designs would be faster

than the 4-phase design; perhaps not double but at least

substantially faster. The results in section VII show that the

opposite is the case. A closer look reveals that this has to

do with re-shaping of the gated enable-pulse. This causes

violation of setup and hold time requirements of the latches,

and to fix this it is necessary to increase the delay of the delay

elements (see Fig. 8). This negatively affects the handshake

cycle time. For this reason we have implemented a fourth

design, the 2ph-bd design, which is a straightforward 2-phase

bundled-data design without gating that is similar to the 4ph-

bd design.

VI. IMPLEMENTATION AND DESIGN FLOW

This section addresses the design flow and elaborates

on some of the challenges faced when implementing asyn-

chronous circuits using conventional EDA-tools.

All the above designs were described in VHDL and simu-

lated using ModelSim. They were implemented using a 65nm

CMOS standard cell library from STMicroelectronics with

HVT and SVT cells. Synthesis was performed using Design

Compiler from Synopsys. To have a more precise evaluation,

taking into account the effects of placement and routing, actual

layouts were produced using Cadence SOC Encounter. All

four designs were tested through simulation after every step

of the design flow (post-synthesis and post-layout). Power

consumption was estimated using Synopsys PrimeTime.

Regarding the use of conventional design tools for the

asynchronous routers, careful handling was needed for con-

straining the designs for synthesis. Local timing constraints

were applied in order to optimize the combinational logic,

and place delay elements of specific values. Manual handling

of combinational loops was also done. The designs were

synthesized with an aim for optimizing for speed.

Concerning the delay elements used in the asynchronous

designs a trial-synthesis and simulation step was done to

find the appropriate delay value needed in each case. A

delay element matching the HPU combinational delay and one

matching the crossbar combinational delay are needed in all

asynchronous router designs. After determining the HPU and

crossbar combinational delay, a safe margin of 20% was added

to cover for delay fluctuations. The delays were implemented

as a series of buffers and inverters of the same technology.

324

This was done by directing the synthesis tool to assign specific

delay or delay ranges on a path. In addition to these, some

timing assumptions need to be met in the 2-phase controller

as described in Section IV. Due to wire-load effects that take

place and affect the timing after the layout of the asynchronous

routers, some adjustments needed to be made on the delay

elements. An optimization process of adjusting the delay

elements, performing synthesis and layout was repeated in

order to achieve correct timing behavior (timing closure) of the

asynchronous circuit without excessive delays compromising

the performance.

VII. RESULTS

This section presents results on cell area, frequency and

energy consumption for the different router designs. The

results are summarized in Table I and discussed below.

For the simulations the different router designs were con-

nected to an environment consisting of independent ideal

producers and consumers on the input and output ports. The

inputs were driven with streams of 3-phit packets and with a

link utilization of 70%, meaning that 30% of the tokens are

void-tokens.

The frequency reported for the asynchronous designs is the

frequency of a handshake. As seen in Table I the frequency

of all the designs is comparable. Among the asynchronous

routers the 2ph-bd design shows the best frequency. This was

expected due to the 2-phase handshake protocol and because

it is the simplest of the 2-phase designs.

The area shown in Table I is the cell area of the de-

signs reported after synthesis. The area of the asynchronous

bundled-data designs (4ph-bd, 2ph-bd and 2ph-bd-g) are all

quite similar (7401-7594um2) and slightly smaller than the

synchronous router. This is as expected because all these

designs implement the same combinational circuitry and use

either clocked flip-flops or handshake controlled latches (that

are slightly smaller than clocked flip-flops). The area is almost

doubled in the 2ph-bd/LEDR-g design. This is also as expected

and it is due to the use of LEDR encoding, i.e. two wires per

bit, and from the more complex completion detection circuitry.

The area of the mesochronous router is the sum of the area

of the synchronous router and the area of the FIFOs added to

the input ports. As mentioned in Section IV-B the area of the

optimized FIFO design [17], [18] is an estimate.

It is interesting to observe that the FIFOs make the

mesochronous router 2-3 times larger than the synchronous

router. It is even more interesting to observe that all the

asynchronous bundled-data routers (4ph-bd, 2ph-bd and 2ph-

bd-g) are 2-3 times smaller than the mesochronous router, and

that even the 2ph-bd/LEDR-g design is 1.5-2 times smaller

than the mesochronous router. These are key results of the

paper.

The power consumption was measured using PrimeTime

and the figures are the total of cell, wire and leakage power.

Since power is dependent on speed we have calculated the

energy per cycle, that is either clock cycle or handshake cycle,

in order to better compare the energy efficiency of the designs.

Table I
RESULTS FOR THE ROUTER DESIGNS IMPLEMENTATIONS.

Post-synthesis Post-layout
Cell Energy / Energy /
Area Freq. cycle Freq. cycle
um2 MHz pJ MHz pJ

Synchronous 8026 1111 1.73 885 1.40

Mesochronous
FIFO [15] 24239 1111 4.32 724 7.87
FIFO [17], [18] (16132)

FIFOs
from [15] 16213 1111 2.58 724 6.16
from [17], [18] (8106)

4ph-bd 7401 833 7.91 701 8.20
2ph-bd 7594 998 7.92 711 8.03
2ph-bd-g 7536 900 593
Void 100% 1.64 2.11
Void 30% 6.51 7.23
Void 0% 8.77 9.66

2ph-bd/LEDR-g 12578 862 645
Void 100% 3.82 3.80
Void 30% 8.31 9.95
Void 0% 10.02 12.00

As seen in Table I the energy consumption of the

mesochronous and the asynchronous designs are relatively

similar, in the order of 8-10 pJ per cycle. In order to explore

the ability of the two gated designs (2ph-bd-g, 2ph-bd/LEDR-

g) to avoid unnecessary switching, we simulated these two

designs using input streams with 100% phit-tokens and with

100% void-tokens in addition to the 70% / 30% phit/void mix

used in all cases. The results show that the 2ph-bd-g de-

sign saves considerable energy when propagating void-tokens,

while it consumes the same energy as the mesochronous in the

70% / 30% phit/void case. 2ph-bd/LEDR-g design also saves

considerable energy on void-tokens, but the additional com-

plexity has some energy overhead. In practice, the percentage

of void-tokens will be greater than phit-tokens allowing for

great energy savings for the gated designs.

In conclusion, the above results show that all the asyn-

chronous designs are more area-efficient than a mesochronous

router. Additionally, different trade-offs are possible for speed,

energy consumption per cycle and robustness. The 2ph-bd

design offers the highest speed with 4ph-bd slightly slower

but very close. Energy savings can be achieved in the 2ph-

bd-g by gating off unnecessary switching by trading some

of the speed. Finally robustness can be achieved in the 2ph-

bd/LEDR-g design with a cost on area and a slightly higher

energy consumption, that can be limited by gating.

VIII. CONCLUSION

TDM is a straightforward approach for providing virtual

channels in NOCs for hard real-time systems and the routers

for such a NOC have the smallest hardware complexity of any

router we know. The paper extended previous work on syn-

chronous and mesochronous TDM-based NOCs by exploring

the use of asynchronous routers that allow a truly GALS-style

implementation of a NOC-based multi-core platform.

The paper presented a new timing-architecture for a TDM-

based NOC using mesochronous NIs and asynchronous routers

325

and links where the elasticity of the network of asynchronous

routers and links covers for phase differences between the

clocks used in the NIs. The paper presented a number of

asynchronous router designs: a simple 4-phase bundled data

design, a 2-phase bundled data design, a version of the 2-

phase bundled data design using a mechanism that avoids

unnecessary toggling of signals when a link is idle, and a more

complex 2-phase bundled data design using level-encoded

dual-rail links and the previous “clock gating” mechanism as

well. The paper compared the area, speed and power of these

designs with an existing router design for a mesochronous

version of the aelite NOC;
Our results confirm previously published results and shows

that the mesochronous FIFO-buffers account for 50-66,% of

the total area of the mesochronous router. The asynchronous

routers avoid these FIFOs and all asynchronous routers are

smaller than the mesochronous router. The area of the 4ph-

bd, the 2ph-bd and the 2ph-bd-g router is 33-50% and

the area of the 2ph-bd/LEDR-g router is 50-66% of the

mesochronous router. The speed of the mesochronous and the

asynchronous designs are roughly similar; 600-750MHz for

post-layout designs. The energy consumed per phit is in the

8-10 pJ/phit range; largest for the complex 2ph-bd/LEDR-g

design. However, a large gain is achieved in designs that gate

off unnecessary switching activity. Overall, the contribution of

this work is a solution to clock distribution problem while of-

fering real-time guarantees with a range of router designs that

apply various mechanisms and offer different trade-offs. Gains

are on speed (4ph-bd, 2ph-bd), energy consumption per phit of

data (2ph-bd-g), robustness(2ph-bd/LEDR-g), while keeping a

very low area compared to alternative (mesochronous) designs.

ACKNOWLEDGMENTS

The authors would like to thank the T-CREST project part-

ners for their support as well as Joachim Rodrigues and Oskar

Andersson from the Department of Electrical and Information

Technology of Lund Univeristy for their help with the EDA

tools.

REFERENCES

[1] Time-predictable Multi-Core Architecture for Embedded Systems
(T-CREST). [Online]. Available: www.t-crest.org

[2] K. Goossens and A. Hansson, “The aethereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. ACM/IEEE Design
Automation Conference (DAC), Jun. 2010, pp. 306 –311.

[3] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proceedings of the IEEE, vol. 83, no. 10,
pp. 1374–1396, 1995.

[4] T. Bjerregaard and J. Sparsø, “A Scheduling Discipline for Latency
and Bandwidth Guarantees in Asynchronous Network-on-chip,” in Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC). IEEE Computer Society Press, 2005, pp. 34–43.

[5] The International Technology Roadmap for Semiconductors, “ITRS
2011 Edition – Design,” 2011. [Online]. Available: http://www.itrs.net/

[6] A. Hansson, M. Subburaman, and K. Goossens, “aelite: a flit-
synchronous network on chip with composable and predictable services,”
in Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), 2009, pp. 250–255.

[7] P. T. Wolkotte, G. Smit, G. Rauwerda, and L. Smit, “An energy-efficient
reconfigurable circuit-switched network-on-chip,” in Proc. 19th IEEE
International Parallel and Distributed Processing Symposium, IPDPS
2005, April 2005.

[8] D. Wiklund and D. Liu, “SoCBUS: Switched network on chip for hard
real time embedded systems,” in Proc. IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2003. IEEE Computer
Society, 2003, p. 78a.

[9] K. Goossens, J. Dielissen, and A. Rădulescu, “The Æthereal network on
chip: Concepts, architectures, and implementations,” IEEE Design and
Test of Computers, vol. 22, no. 5, pp. 414–421, Sept-Oct 2005.

[10] A. Hansson and K. Goossens, On-chip interconnect with aelite / Com-
posable and predictable systems. Springer, 2011, embedded systems.

[11] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within
the nostrum network on chip,” in Proc. Design, Automation and Test in
Europe (DATE). IEEE Computer Society Press, Feb. 2004, pp. 890–
895.

[12] C. Paukovits and H. Kopetz, “Concepts of switching in the time-
triggered network-on-chip,” IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, pp. 120–129,
2008.

[13] J. Sparsø, “Networks-on-chip for real-time multi-processor systems-on-
chip,” in Proc. International Conference on Application of Concurrency
to System Design (ACSD), Jun. 2012, pp. 1–5.

[14] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge
University Press, 1998.

[15] I. M. Panades and A. Greiner, “Bi-synchronous fifo for synchronous
circuit communication well suited for network-on-chip in gals architec-
tures,” in International Symposium on Networks-on-Chip (NOCS), 2007,
pp. 83–92.

[16] I. M. Panades, A. Greiner, and A. Sheibanyrad, “A low cost network-
on-chip with guaranteed service well suited to the GALS approach,” in
1st International Conference on Nano-Networks (Nano-Net), 2006, pp.
1–5.

[17] P. Wielage, J. Marinissen, M. Altheimer, and C. Wouters, “Design and
DfT of a high-speed area-efficient embedded asynchronous FIFO,” in
Proc. Design, Automation and Test in Europe (DATE), 2007, pp. 853–
858.

[18] I. Loi, F. Angiolini, and L. Benini, “Developing mesochronous synchro-
nizers to enable 3D NoCs,” in Proceedings of the conference on Design,
automation and test in Europe (DATE), 2008, pp. 1414–1419.

[19] D. Ludovici, A. Strano, G. N. Gaydadjiev, and D. Bertozzi,
“Mesochronous NoC technology for power-efficient GALS MPSoCs,” in
Proc. International Workshop on Interconnection Network Architecture:
On-Chip, Multi-Chip (INA-OCMC). ACM, 2011, pp. 27–30.

[20] J. Bainbridge and S. Furber, “Chain: A delay-insensitive chip area
interconnect,” IEEE Micro, vol. 22, no. 5, pp. 16–23, Sep./Oct. 2002.

[21] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An
asynchronous NOC architecture providing low latency service and its
multi-level design framework,” in Proc. IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC)., Mar. 2005, pp. 54 –
63.

[22] T. Felicijan, D. Dielissen, and K. Goossens, “Asynchronous TDMA
Networks on Chip,” Philips Research Eindhoven, Tech. Rep., Jan. 2004,
technical Note 2004/00801.

[23] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC: A
Template for Composable and Predictable Multi-Processor System on
Chips,” ACM Transactions on Design Automation of Electronic Systems,
vol. 14, no. 1, 2009.

[24] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An Area-efficient Network
Interface for a TDM-based Network-on-Chip,” in Proc. Design Automa-
tion and Test in Europe (DATE), 2013, pp. 1044–1047.

[25] J. Sparsø, “Asynchronous circuit design – a tutorial,” in Principles of
asynchronous circuit design – A systems perspective, J. Sparsø and
S. Furber, Eds. Kluwer Academic Publishers, 2001, ch. 1-8, pp. 1–152.

[26] M. Dean, T. Williams, and D. Dill, “Efficient self-timing with level-
encoded 2-phase dual-rail (LEDR),” in Advanced Research in VLSI:
Proceedings of the 1991 UC Santa Cruz Conference, C. H. Séquin, Ed.
MIT Press, 1991, pp. 55–70.

[27] M. Imai and T. Yoneda, “Improving Dependability and Performance
of Fully Asynchronous On-chip Networks,” in Proc. Intl. Symposium
on Advanced Research in Asynchronous Circuits and Systems (ASYNC).
IEEE Computer Society Press, apr 2011, pp. 65–76.

[28] G. S. Taylor and G. M. Blair, “Reduced complexity two-phase mi-
cropipeline latch controller,” IEEE Journal of Solid State Circuits -
Institute of Elect and Electr Engineers, vol. 33, no. 10, pp. 1590–1593,
1998.

326

