
An Area-efficient Network Interface for
a TDM-based Network-on-Chip

Jens Sparsø, Evangelia Kasapaki, Martin Schoeberl
Department of Informatics and Mathematical Modelling

Technical University of Denmark
Email: jsp@imm.dtu.dk, evka@imm.dtu.dk, masca@imm.dtu.dk

Abstract—Network interfaces (NIs) are used in multi-core
systems where they connect processors, memories, and other IP-
cores to a packet switched Network-on-Chip (NOC). The func-
tionality of a NI is to bridge between the read/write transaction
interfaces used by the cores and the packet-streaming interface
used by the routers and links in the NOC. The paper addresses
the design of a NI for a NOC that uses time division multiplexing
(TDM).

By keeping the essence of TDM in mind, we have developed
a new area-efficient NI micro-architecture. The new design
completely eliminates the need for FIFO buffers and credit based
flow control – resources which are reported to account for 50-
85 % of the area in existing NI designs. The paper discusses the
design considerations, presents the new NI micro-architecture,
and reports area figures for a range of implementations.

Index Terms—Multiprocessor interconnection networks; Real-
time systems; Time division multiplexing;

I. INTRODUCTION

Over the last decade, the network-on-chip (NOC) concept
has evolved from an academic research topic towards industrial
take-up and most of today’s multi-core platforms uses some
form of packet-switched on-chip interconnect. Fig. 1 shows
an example of such a platform using a 2D-mesh topology.
Typical cores are: (i) processors with some amount of local
memory, (ii) memory controllers for external shared memory,
(iii) dedicated hardware accelerators, and (iv) IO devices.

As illustrated in Fig. 1(b), the network interface (NI) bridges
between the address-space read-write transaction interface
used by the cores and the packet streaming interface used by
the routers in the network. While there are standards for the
former (AMBA AXI [1], OCP [2], etc.), the packet interface
is specific for the specific NOC. As the NI encapsulates these
NOC-specific details, it follows that NIs, or at least the back-
ends of NIs, may be as different as the routers that are used
in the NOC. There are surprisingly few papers addressing the
design of NI’s, and often the area measures reported can be
difficult to compare.

The work presented in this paper is part of the larger project
T-CREST [3] aiming at developing a time-predictable, NOC-
based multi-core platform for hard real-time systems. This
context implies an emphasis on worst-case execution time,
which must be analyzable/predictable and with a tight bound in
order to avoid over-engineering. The entire design, including
the processor cores, the NOC, the memory architecture, and

978-3-9815370-0-0/DATE13/ © 2013 EDAA

Processor

IM/I$ DM/D$
DMA

Front end
(shell)

Back end
(kernel)

Processor Core

Network
Interface

Router
Link

Link

Link

Link

Link NOC-specific:
 - Packet format
 - Signalling protocol

(a)

(b)

SPM

OCP / AXI / Wishbone

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

R

Core

Fig. 1. An example NOC based MPSoC: (a) 2D mesh NOC topology. (b)
Details of a processor core consisting of a processor with local memories
(caches and/or scratchpad memories), one or more DMA controllers, and a
network adaptor.

the compiler is being designed with the aim of minimizing the
worst-case rather than average-case execution time.

This focus on time-predictability, in combination with an
aim of keeping the hardware cost low, has caused us to adopt
ideas from the time-division-multiplexing (TDM) based NOC
designs (e.g., aelite [4]). The TDM scheme supports time
predictability in a straightforward way, and the routers and
links are extremely simple and efficient.

To an application programmer the inter-processor NOC
offers end-to-end circuits between any two cores. In a typical
application the “connectivity” between processor cores is
sparse and the TDM schedule period correspondingly short,
but as demonstrated in [5], even a fully connected topology
can be supported by a TDM schedule with a modest period.

Our NOC uses source routing and the NIs inject packets into
the packet switched structure of routers and links according
to a pre-determined periodic TDM-schedule, which avoids the
need for dynamic arbitration, buffering, and flow control. In
this way the routers and links form a simple, switched, and
pipelined circuit. From a hardware point of view it does not
get much simpler.

The contribution of this paper is an area-efficient NI micro-
architecture. It has evolved from reconsidering a number of

issues including the interface between a processor core and the
NI, the clock-domain crossings, and the way DMA controllers
are used to implement end-to-end transfer of data between
processor cores. The key idea underlying the new NI micro-
architecture is to apply TDM-based scheduling from end-to-
end. This means that reading from a source memory, traversing
the source NI, traversing the packet switched NOC (routers
and links), traversing the destination NI, and writing into the
destination memory is based on a global, static TDM schedule.
With this end-to-end TDM-schedule we benefit from the very
essence of TDM-based multiplexing that avoids buffering,
flow-control, and dynamic arbitration. A key element of the
new NI is that DMA controllers, which are normally part of the
processor cores, are moved into the NI, and are implemented
with an efficient table structure.

The paper is organized as follows. Sec. II presents related
work. Sec. III presents our new NI architecture and the under-
lying observations and ideas. Sec. IV presents results on area
and speed for a prototype implemented in FPGA technology
and in a 90 nm CMOS standard-cell library. Finally, Sec. V
concludes the paper.

II. RELATED WORK

The fact that a NOC is a shared communication medium
comprising independently arbitrated resources (routers or
links) severely complicates timing analysis. In order to give
guarantees on bandwidth and/or latency some form of end-
to-end connections are needed. Solutions to this include non-
blocking routers with rate control (e.g., Mango [6]), and circuit
switching (e.g., SoCBUS [7]), possibly with time division
multiplexing (TDM), (e.g., Æthereal [8], [4]).

Details of a NI for the Spidergon NOC developed by ST
Microelectronics are reported in [9], and the paper compares
against a number of other NI designs. The area measures
reported in [9] for typical size NIs range from 7 to 50 kgates.
In [10] the area of a typical NI instance for the original
Æthereal NOC, which supports both GS and BE traffic, is
reported to be 0.25 mm2 in a 0.130µm CMOS technology. In
[9] this is quoted as 21 kgates.

A specific aelite NOC instance has been designed for a TV-
set platform, and a discussion of its implementation cost is
provided in [11, Sect. 8.1]. The NOC has 53 physical ports and
supports 45 connections (bi-directional channels) among the
11 cores that it connects. The NOC comprises 6 routers, 11 NIs
and 54 shells. In a 90 nm CMOS technology the entire NOC
occupies a cell area of 5.5 mm2. Buffers in the NIs related to
the channel endpoints totals 24 KB and account for 4.7 mm2

(85 %). This figure assumes a flip-flop based buffer design.
Based on the figures reported in [11] we calculate the average
area of one of the 11 NIs to be 0.49 mm2 when using flip-flop
based FIFOs, 0.22 mm2 when using SRAM based FIFOs, and
0.13 mm2 when using custom FIFOs.

An interesting perspective on the above area measures is to
compare against the size of a synthesizable 32-bit processor. In
a 90 nm technology the size of a mips32-m14kc processor is

0.2-0.5 mm2 [12]. This includes the CPU itself, the system co-
processor, a memory management unit, a translation look-aside
buffer, a multiply-divide unit, 8 KB I-cache and 8 KB D-cache.
These figures span the same range as the above mentioned NI
designs. It is interesting to observe that the existing literature
seem not to question the size of the published NI-designs.

III. THE TDM-BASED NETWORK INTERFACE

Fig. 1(b) shows a processor with some private memory
(caches and explicitly managed scratchpad memories (SPM))
and a DMA controller. In our T-CREST platform, as well
as in the CoMPSoC platform [13], the DMA controllers
are intended to implement background DMA-driven block
transfers from the local SPM and into the SPM of a remote
processor. This implements message passing. Our new NI
micro-architecture, Fig. 2, pulls the DMA controllers into the
NI and integrates them with the TDM scheduling mechanism.

A. Baseline Observations

The very essence of time-division-multiplexing is that it
avoids buffering, flow-control, and dynamic arbitration. Ideally
this implies that it should be possible to transfer data all the
way from the SPM of one processor core into the SPM of
another processor core without any buffering, flow control,
and dynamic arbitration.

The routers in the aelite NOC enjoy this simplicity, but the
NIs in aelite does not, and we are not aware of any NI design
that actually enjoys this simplicity. The essence of the problem
is the following: Conceptually data is communicated over an
end-to-end virtual circuit. In reality this involves a number of
hops, not just from router to router, but also inside the NIs due
to the layered implementation of these. Timing uncertainties
between a source and a sink involved in a hop anywhere along
the connection may compromise the inherent simplicity of the
TDM approach, and result in a need to introduce buffering
and flow control. Our new NI design avoids these problems.

An application may want to concurrently send messages to
several other processors. In a TDM-based NOC all communi-
cation channels are assigned some slots in the TDM schedule
and DMA transfers have to be interleaved correspondingly.
This calls for one DMA controller per outgoing channel.

On the other hand, the NI can only inject one packet at a
time into the NOC and consequently only one DMA controller
can be active at a time. This allows time-slicing a single DMA
and sharing the resources for a number of logical DMAs.
This enables a DMA controller design using a single memory
structure that stores the address pointers, the word counts, and
the status and control registers for all the DMA controllers.

B. Micro-Architecture of the TDM-based NI

Our key ideas are to use the already dual-ported commu-
nication memories (SPMs) for clock domain crossing (as in
[14]), and to move the DMA controllers from the processor
cores into the NIs. This avoids the need for buffering and flow
control, it allows the DMA controllers to directly deliver the
payload data to outgoing packets in accordance with the TDM

TABLE I
AREA FIGURES FOR A SELECTION OF NI IMPLEMENTATIONS WHEN

SYNTHESIZED FOR AN ALTERA EP2C70 FPGA.

NI design size NI Logic Slot and DMA tables
Slot Period DMAs LUTs FFs LUTs FFs BRAM

4 326 162 237 374 -
16 8 337 162 450 647 -

16 341 162 116 88 1024
4 326 163 286 422 -

32 8 339 163 378 579 128
32 346 163 34 3 2240
4 328 164 175 323 192

64 8 340 164 378 579 256
64 351 164 34 3 4544

schedule, and it opens for a very interesting and efficient table-
based implementation of the DMA controllers. This novel
micro-architecture, shown in Fig. 2, is the key contribution
of the paper.

The key elements of the micro-architecture are the slot
counter, the slot table, and the DMA table. The slot
counter is reset and incremented in all NIs using the same
(mesochronous) clock and the slot counter defines the slots in
the TDM schedule period. A slot corresponds to the time it
takes to transmit a packet into the NOC, and consequently the
number of clock cycles in a slot is identical to the number of
flits in a packet.

The slot counter indexes a slot table whose entries consist
of a valid bit and an index into the DMA table. The valid
bit indicates whether or not a packet is to be sent in the
corresponding time slot. The interfaces denoted “M” and “S”
are master and slave ports supporting point-to-point read/write
transactions. An entry in the DMA table holds all the registers
that are found in a normal DMA controller: some control bits
(start and done), a read pointer, a write pointer, and a word
count. In addition to this, an entry also holds the route to
be used when a packet is sent across the NOC. The reason
to split between a slot table and a DMA table is to be able
to assign more than one slot in a TDM schedule period to
a connection and reserve different amounts of bandwidth for
different end-to-end circuits.

S

S

S

M M

S

DMA table
Flags Word count Route Write ptr. Read ptr.

S

Slot tableSlot counter

─ 1 +1 +1

SPM

M

S S

DataDest. Addr.Route DataDest. Addr.Route

Control FSM

Router

Outgoing packets Incoming packets

Data

AddressAddress Data

Flits
Flits

To Processor (Data memory bus)

MUX DEMUX

To Processor (Data memory bus)

Fig. 2. Block diagram showing the micro-architecture of the new network
interface. The design merges the DMA-controllers and the TDM scheduling
such that end-to-end data transfer is controlled by the same global TDM-
schedule.

A variation of the architecture involves storing the route
information in the slot table. This would allow a connection
that has been allocated several slots in the TDM period to
use different routes in the different slots. Another variation
merges the slot table and the DMA table into a single table.
This may allow a more efficient hardware implementation, and
it is possible if no connection is assigned more than one slot
within the TDM period.

Finally we mention that the aelite-based CoMPSoC plat-
form uses one communication memory per connection, while
our architecture needs only a single communication memory
shared by all connections in and out of the processor core.
This is due to the interleaved access resulting from the TDM
scheme. Consequently, the new NI micro-architecture may
lead to substantial area reductions on the processor cores as
well.

C. Support of a GALS Organization

Our aim is a GALS-style design allowing independently
clocked processor cores. For the transfer of data between the
processor and the NI the dual ported SPM provides clock
domain crossing for free. Access to the DMA table crosses
the clock domain boundary and a few cycles latency is added
to read transactions. As setting up DMA transfers is likely
to be rare events, compared to DMA initiated read or write
transactions, this is a small overhead.

The TDM scheme requires that the NIs emit and absorb
flits (and/or packets) at the same rate and synchronous with
respect to the TDM schedule. This calls for a mesochronous
clocking of the NIs. From this follows that the routers must be
mesochronous as well. An entirely asynchronous implemen-
tation of the routers is also possible – the mesochronous NIs
will input and output flit-tokens at the same rate, and the speed
of the asynchronous routers and links has to exceed this rate
for safe operation. Such a design is our final goal, and this
is the reason we decided on using source routing, because it
reduces the routers to simple pipelined controlled switches.

IV. IMPLEMENTATION AND RESULTS

To evaluate our NI design we have developed a parameter-
ized VHDL description of a NOC using the new NI micro-
architecture and a 3-stage pipelined aelite-style router [11].
The design is globally synchronous and we have not (yet)
implemented any clock domain crossings. A packet consists
of a header flit and two data flits each holding one 32-bit
word. The header consists of the route and the local address
in the target SPM and they are directly provided by the DMA
table. The choice of sending two 32-bit words in one packet
represents a compromise between bandwidth utilization and
a desire to have a short TDM slot and thereby a short TDM
schedule period.

The processor has access to the SPM, to the slot table (for
initialization purposes), and to the DMA table. We envision
that the system will be booted using a separate processor-
memory network, and that each processor will initialize its NI
before normal operation starts. Our simulation setup initializes
the NIs in this way.

The NI design has been synthesized for an Altera Cyclone
II EP3C70 chip. Table I shows the area figures for a selection
of NI implementations ranging from a slot period of 16 and
4 DMAs up to a slot period of 64 and 64 DMAs. The table
lists the amount of hardware resources used: the number of
(4-input) LUTs, the number of flip-flops, and in these cases
where Block RAM has been synthesized, the number of bits
used by the NI design. The table shows separate figures for
the NI logic and for the slot and DMA tables. As seen the
size of the NI logic is constant across the different size NI
instances.

In order to compare against the specific aelite NOC dis-
cussed in section II we have synthesized the NI with a slot
period of 32 and 8 DMAs per NI to a 90 nm CMOS process.
Using standard cells and flip-flop-based tables the total area of
a NI is 0.024 mm2, and the breakdown is NI logic 0.0063 mm2,
slot table 0.0036 mm2 and DMA table 0.014 mm2.

V. CONCLUSION

This paper presented a novel and area efficient network
interface for a TDM-based NOC. The key idea is to apply
a single global TDM schedule for the whole communication
path from reading local memory, traversing the NI, traversing
the NOC (packet switched routers and links), the target NI,
and writing into the target local memory.

As a result, the new design completely eliminates the need
for FIFO buffers and credit-based flow control, resources
which are reported to account for 50-85 % of the area in
existing network interface designs, and the new NI design
is at least 2-3 times smaller than previously published NIs
for real-time NOCs. This is achieved by moving the DMA
controllers, which are normally implemented as part of the
processor cores, into the NI and by operating the DMAs in
synchrony with the TDM scheduling in the NI. The NI is
intended to be used with simple TDM-based routers, resulting
in a very small and efficient NOC design.

ACKNOWLEDGEMENT

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST). We would like to thank the T-CREST project
members for the interesting and inspiring discussions on time-
predictable architectures during the project meetings.

REFERENCES

[1] ARM Ltd., “AMBA Advanced eXtensible Interface (AXI) Protocol,”
2011. [Online]. Available: http://www.arm.com

[2] Open Core Protocol (OCP) Specification, Release 3.0, 2009. [Online].
Available: http://www.ocpip.org

[3] Time-predictable Multi-Core Architecture for Embedded Systems
(T-CREST). [Online]. Available: www.t-crest.org

[4] A. Hansson, M. Subburaman, and K. Goossens, “aelite: a flit-
synchronous network on chip with composable and predictable services,”
in Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), 2009, pp. 250–255.

[5] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, “A statically
scheduled time-division-multiplexed network-on-chip for real-time sys-
tems,” in Proceedings of the 6th International Symposium on Networks-
on-Chip (NOCS). Lyngby, Denmark: IEEE, May 2012, pp. 152–160.

[6] T. Bjerregaard and J. Sparsø, “A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip,” in Proc. Design Automation and Test in Europe (DATE). IEEE
Computer Society Press, 2005, pp. 1226–1231.

[7] D. Wiklund and D. Liu, “SoCBUS: Switched network on chip for hard
real time embedded systems,” in Proc. IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2003. IEEE Computer
Society, 2003, p. 78a.

[8] K. Goossens and A. Hansson, “The aethereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. ACM/IEEE Design
Automation Conference (DAC), Jun. 2010, pp. 306–311.

[9] S. Saponara, L. Fanucci, and M. Coppola, “Design and coverage-driven
verification of a novel network-interface IP macrocell for network-on-
chip interconnects,” Microprocessors and Microsystems, vol. 35, no. 6,
pp. 579–592, 2011.

[10] Radulescu, Dielissen, Pestana, Gangwal, Rijpkema, Wielage, and
Goossens, “An efficient on-chip NI offering guaranteed services, shared-
memory abstraction, and flexible network configuration,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 1, pp. 4–17, 2005.

[11] A. Hansson and K. Goossens, On-chip interconnect with aelite / Com-
posable and predictable systems. Springer, 2011.

[12] MIPS Technologies Inc., “MIPS32 M14Kc Core.” [Online]. Available:
www.mips.com/products/processor-cores/classic/mips32-m14kc/

[13] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A Template for Composable and Predictable Multi-Processor System
on Chips,” Transactions on Design Automation of Electronic Systems,
vol. 14, no. 1, 2009.

[14] M. Schoeberl, “A time-triggered network-on-chip,” in International
Conference on Field-Programmable Logic and its Applications (FPL
2007). Amsterdam, Netherlands: IEEE, August 2007, pp. 377–382.

